scholarly journals Future Hydrologic Extremes of the Red River Basin

2018 ◽  
Vol 57 (6) ◽  
pp. 1321-1336 ◽  
Author(s):  
Darrian Bertrand ◽  
Renee A. McPherson

AbstractHydrologic extremes of drought and flooding stress water resources and damage communities in the Red River basin, located in the south-central United States. For example, the summer of 2011 was the third driest summer in Oklahoma state history and the driest in Texas state history. When the long-term drought conditions ended in the spring of 2015 as El Niño brought record precipitation to the region, there were also catastrophic floods that caused loss of life and property. Hydrologic extremes such as these have occurred throughout the historical record, but decision-makers need to know how the frequency of these events is expected to vary in a changing climate so that they can mitigate these impacts and losses. Therefore, the goals of this study focus on how these hydrologic extremes impact water resources in the Red River basin, how the frequency of such events is expected to change in the future, and how this study can aid local water-resource managers and decision-makers. Heavy-precipitation events were defined at the historical 90th and 99th percentiles, and severe-drought events were identified at a threshold of the standardized precipitation evapotranspiration index’s value of less than or equal to −1. The results show an increase in the frequency of severe-drought events in the western Red River basin and a rise in heavy-rainfall events in the east by the end of the century, especially under RCP 8.5. Therefore, decision-makers and water-resource managers will likely need to prepare for both hydrologic extremes depending on their location within the basin.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Darrian Bertrand ◽  
Renee A. McPherson

Climate models provide information that resource managers, policy makers, and researchers can use when planning for the future. While this information is valuable in the broad sense, the low spatial-resolution often lacks local details that resource managers and decision makers need to plan for their communities. Therefore, statistically downscaled climate projections provide a high-resolution output and offer local information that is more beneficial than coarse-resolution global climate model output. In the Red River Basin, located in the south-central U.S., this detailed information is used to develop long-term water plans. This area is prone to drought conditions and heavy precipitation events, and studies have consistently estimated that this will continue in the future. This paper introduces a dataset of statistically downscaled climate projections of daily minimum and maximum temperature and daily precipitation that is a useful tool for studies regarding climatological and hydrological aspects in the region. The dataset was created using two quantile mapping techniques to downscale the CCSM4, MPI-ESM-LR, and MIROC5 model outputs to a 0.1-degree spatial resolution. Furthermore, we describe the added value of coproduction of knowledge between climate scientists and end users, or in this case impacts modelers and decision makers, for creating climate projections that can be used for climate risk assessments. A case study of the data’s development and application is provided, detecting the mean daily changes in temperature and precipitation through the end of the century in the Red River Basin for two representative concentration pathways. After applying the users’ inputs to develop the datasets, results for this example estimate an increase in mean daily precipitation in the eastern portion of the basin and as much as a 15% decline in the west by the end of the century. Furthermore, mean daily temperature is expected to rise across the entire basin in all scenarios by up to 6–7°C.


2021 ◽  
Vol 13 (9) ◽  
pp. 4926
Author(s):  
Nguyen Duc Luong ◽  
Nguyen Hoang Hiep ◽  
Thi Hieu Bui

The increasing serious droughts recently might have significant impacts on socioeconomic development in the Red River basin (RRB). This study applied the variable infiltration capacity (VIC) model to investigate spatio-temporal dynamics of soil moisture in the northeast, northwest, and Red River Delta (RRD) regions of the RRB part belongs to territory of Vietnam. The soil moisture dataset simulated for 10 years (2005–2014) was utilized to establish the soil moisture anomaly percentage index (SMAPI) for assessing intensity of agricultural drought. Soil moisture appeared to co-vary with precipitation, air temperature, evapotranspiration, and various features of land cover, topography, and soil type in three regions of the RRB. SMAPI analysis revealed that more areas in the northeast experienced severe droughts compared to those in other regions, especially in the dry season and transitional months. Meanwhile, the northwest mainly suffered from mild drought and a slightly wet condition during the dry season. Different from that, the RRD mainly had moderately to very wet conditions throughout the year. The areas of both agricultural and forested lands associated with severe drought in the dry season were larger than those in the wet season. Generally, VIC-based soil moisture approach offered a feasible solution for improving soil moisture and agricultural drought monitoring capabilities at the regional scale.


Sign in / Sign up

Export Citation Format

Share Document