Is Environmental CAPE Important in the Determination of Maximum Possible Hurricane Intensity?

2005 ◽  
Vol 62 (2) ◽  
pp. 542-550 ◽  
Author(s):  
John Persing ◽  
Michael T. Montgomery

Abstract In numerical simulations using an axisymmetric, cloud-resolving hurricane model, hurricane intensity shows quasi-steady-state behavior. This quasi-steady intensity is interpreted as the maximum possible intensity (MPI) of the model. Within the literature, numerical demonstrations have confirmed theoretically anticipated influences on hurricane intensity such as sea surface temperature, outflow temperature, and surface exchange coefficients of momentum and enthalpy. Here these investigations are extended by considering the role of environmental convective available potential energy (CAPE) on hurricane intensity. It is found that environmental CAPE (independent of changes to the outflow level) has no significant influence on numerically simulated maximum hurricane intensity. Within this framework, MPI theories that are sensitive to environmental CAPE should be discarded.

1996 ◽  
Vol 27 (4) ◽  
pp. 247-254 ◽  
Author(s):  
Zekâi Şen

A simple, approximate but practical graphical method is proposed for estimating the storage coefficient independently from the transmissivity value, provided that quasi-steady state flow data are available from a pumping test. In the past, quasi-steady state flow distance-drawdown data have been used for the determination of transmissivity only. The method is applicable to confined and leaky aquifers. The application of the method has been performed for various aquifer test data available in the groundwater literature. The results are within the practical limits of approximation compared with the unsteady state flow solutions.


Sign in / Sign up

Export Citation Format

Share Document