Large-Eddy Simulation of Marine Atmospheric Boundary Layers above a Spectrum of Moving Waves

2014 ◽  
Vol 71 (11) ◽  
pp. 4001-4027 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams ◽  
Edward G. Patton

Abstract Momentum and scalar transport in the marine atmospheric boundary layer (MABL) is driven by a turbulent mix of winds, buoyancy, and surface gravity waves. To investigate the interaction between these processes, a large-eddy simulation (LES) model is developed with the capability to impose a broadband spectrum of time-varying finite-amplitude surface waves at its lower boundary. The LES model adopts a Boussinesq flow model and integrates the governing equations on a time-varying, surface-fitted, nonorthogonal mesh using cell-centered variables with special attention paid to the solution of the pressure Poisson equation near the wavy boundary. Weakly unstable MABLs are simulated with geostrophic winds increasing from 5 to 25 m s−1 and wave age varying from swell-dominated to wind-wave equilibrium. The simulations illustrate cross-scale coupling as wave-impacted near-surface turbulence transitions into shear-convective rolls with increasing distance from the water. In a regime with swell, low winds, and weak heating, wave-induced vertical velocity and pressure signals are readily observed well above the standard reference height ζa = 10 m. At wind-wave equilibrium, the small-scale wave-induced signals are detectable only near the water surface. Below ζa, a nearly-constant-flux layer is observed where the momentum flux carried by turbulence, form stress, and subgrid-scale motions shifts with varying wave age and distance above the water. The spectral content of the surface form stress is wave-age dependent, especially at low wavenumbers. The LES wind profiles deviate from Monin–Obukhov similarity theory in nonequilibrium wind-wave conditions, and entrainment is greatly enhanced by shear-induced engulfment events.

2013 ◽  
Vol 726 ◽  
pp. 62-99 ◽  
Author(s):  
Di Yang ◽  
Charles Meneveau ◽  
Lian Shen

AbstractWind blowing over the ocean surface can be treated as a turbulent boundary layer over a multiscale rough surface with moving roughness elements, the waves. Large-eddy simulation (LES) of such flows is challenging because LES resolves wind–wave interactions only down to the grid scale, $\Delta $, while the effects of subgrid-scale (SGS) waves on the wind need to be modelled. Usually, a surface-layer model based on the law of the wall is used; but the surface roughness has been known to depend on the local wind and wave conditions and is difficult to parameterize. In this study, a dynamic model for the SGS sea-surface roughness is developed, with the roughness corresponding to the SGS waves expressed as ${\alpha }_{w} \hspace{0.167em} { \sigma }_{\eta }^{\Delta } $. Here, ${ \sigma }_{\eta }^{\Delta } $ is the effective amplitude of the SGS waves, modelled as a weighted integral of the SGS wave spectrum based on the geometric and kinematic properties of the waves for which five candidate expressions are examined. Moreover, ${\alpha }_{w} $ is an unknown dimensionless model coefficient determined dynamically based on the first-principles constraint that the total surface drag force or average surface stress must be independent of the LES filter scale $\Delta $. The feasibility and consistency of the dynamic sea-surface roughness models are assessed by a priori tests using data from high-resolution LES with near-surface resolution, appropriately filtered. Also, these data are used for a posteriori tests of the dynamic sea-surface roughness models in LES with near-surface modelling. It is found that the dynamic modelling approach can successfully capture the effects of SGS waves on the wind turbulence without ad hoc prescription of the model parameter ${\alpha }_{w} $. Also, for ${ \sigma }_{\eta }^{\Delta } $, a model based on the kinematics of wind–wave relative motion achieves the best performance among the five candidate models.


2007 ◽  
Vol 64 (12) ◽  
pp. 4445-4457 ◽  
Author(s):  
M. Antonelli ◽  
R. Rotunno

Abstract This paper describes results from a large-eddy simulation (LES) model used in an idealized setting to simulate the onset of the sea breeze. As the LES is capable of simulating boundary layer–scale, three-dimensional turbulence along with the mesoscale sea-breeze circulation, a parameterization of the planetary boundary layer was unnecessary. The basic experimental design considers a rotating, uniformly stratified, resting atmosphere that is suddenly heated at the surface over the “land” half of the domain. To focus on the simplest nontrivial problem, the diurnal cycle, effects of moisture, interactions with large-scale winds, and coastline curvature were all neglected in this study. The assumption of a straight coastline allows the use of a rectangular computational domain that extends to 50 km on either side of the coast, but only 5 km along the coast, with 100-m grid intervals so that the small-scale turbulent convective eddies together with the mesoscale sea breeze may be accurately computed. Through dimensional analysis of the simulation results, the length and velocity scales characterizing the simulated sea breeze as functions of the externally specified parameters are identified.


2021 ◽  
Vol 11 (15) ◽  
pp. 7167
Author(s):  
Liang Xu ◽  
Xu Zhao ◽  
Lei Xi ◽  
Yonghao Ma ◽  
Jianmin Gao ◽  
...  

Swirling impinging jet (SIJ) is considered as an effective means to achieve uniform cooling at high heat transfer rates, and the complex flow structure and its mechanism of enhancing heat transfer have attracted much attention in recent years. The large eddy simulation (LES) technique is employed to analyze the flow fields of swirling and non-swirling impinging jet emanating from a hole with four spiral and straight grooves, respectively, at a relatively high Reynolds number (Re) of 16,000 and a small jet spacing of H/D = 2 on a concave surface with uniform heat flux. Firstly, this work analyzes two different sub-grid stress models, and LES with the wall-adapting local eddy-viscosity model (WALEM) is established for accurately predicting flow and heat transfer performance of SIJ on a flat surface. The complex flow field structures, spectral characteristics, time-averaged flow characteristics and heat transfer on the target surface for the swirling and non-swirling impinging jets are compared in detail using the established method. The results show that small-scale recirculation vortices near the wall change the nearby flow into an unstable microwave state, resulting in small-scale fluctuation of the local Nusselt number (Nu) of the wall. There is a stable recirculation vortex at the stagnation point of the target surface, and the axial and radial fluctuating speeds are consistent with the fluctuating wall temperature. With the increase in the radial radius away from the stagnation point, the main frequency of the fluctuation of wall temperature coincides with the main frequency of the fluctuation of radial fluctuating velocity at x/D = 0.5. Compared with 0° straight hole, 45° spiral hole has a larger fluctuating speed because of speed deflection, resulting in a larger turbulence intensity and a stronger air transport capacity. The heat transfer intensity of the 45° spiral hole on the target surface is slightly improved within 5–10%.


2022 ◽  
Vol 22 (1) ◽  
pp. 319-333
Author(s):  
Ian Boutle ◽  
Wayne Angevine ◽  
Jian-Wen Bao ◽  
Thierry Bergot ◽  
Ritthik Bhattacharya ◽  
...  

Abstract. An intercomparison between 10 single-column (SCM) and 5 large-eddy simulation (LES) models is presented for a radiation fog case study inspired by the Local and Non-local Fog Experiment (LANFEX) field campaign. Seven of the SCMs represent single-column equivalents of operational numerical weather prediction (NWP) models, whilst three are research-grade SCMs designed for fog simulation, and the LESs are designed to reproduce in the best manner currently possible the underlying physical processes governing fog formation. The LES model results are of variable quality and do not provide a consistent baseline against which to compare the NWP models, particularly under high aerosol or cloud droplet number concentration (CDNC) conditions. The main SCM bias appears to be toward the overdevelopment of fog, i.e. fog which is too thick, although the inter-model variability is large. In reality there is a subtle balance between water lost to the surface and water condensed into fog, and the ability of a model to accurately simulate this process strongly determines the quality of its forecast. Some NWP SCMs do not represent fundamental components of this process (e.g. cloud droplet sedimentation) and therefore are naturally hampered in their ability to deliver accurate simulations. Finally, we show that modelled fog development is as sensitive to the shape of the cloud droplet size distribution, a rarely studied or modified part of the microphysical parameterisation, as it is to the underlying aerosol or CDNC.


2019 ◽  
Vol 885 ◽  
Author(s):  
A. E. Tejada-Martínez ◽  
A. Hafsi ◽  
C. Akan ◽  
M. Juha ◽  
F. Veron


Author(s):  
Engin Cetindogan ◽  
Govert de With ◽  
Arne E. Holdo̸

A computational study of unsteady, separated fluid flow was made using the Large Eddy Simulation (LES). As flow problem the turbulent flow past a circular cylinder at a Reynolds number of Re = 3900 was chosen. The objective of this work was to study the numerical and modelling aspects of the dynamic Germano-LES turbulence model. Before LES can be used for applications of practical relevance, such as the flow around a complete aircraft or automobile, extensive tests must be carried out on simpler configurations to understand the quality of LES. Also, the influence of different grid resolutions was examined. Due to the fact of a low Reynolds number, no-slip boundary conditions were used at solid walls. Two different subgrid scale models were applied. In recent years several simulations were carried out using the Smagorinsky-LES model but there is still a lack of experience using the dynamic Germano-LES model, which takes the local flow parameters into account. Several simulations with different parameters and grid-models were carried out both with the Germano-LES model and the Smagorinsky-LES model. Comparisons were made between these two models as well as with several experimental data taken from literature.


2015 ◽  
Vol 40 (7) ◽  
pp. 3098-3109 ◽  
Author(s):  
M.A. Abdel-Raheem ◽  
S.S. Ibrahim ◽  
W. Malalasekera ◽  
A.R. Masri

2011 ◽  
Vol 679 ◽  
pp. 288-314 ◽  
Author(s):  
W. ANDERSON ◽  
C. MENEVEAU

Many flows especially in geophysics involve turbulent boundary layers forming over rough surfaces with multiscale height distribution. Such surfaces pose special challenges for large-eddy simulation (LES) when the filter scale is such that only part of the roughness elements of the surface can be resolved. Here we consider LES of flows over rough surfaces with power-law height spectra Eh(k) ~ kβs (−3 ≤ βs < −1), as often encountered in natural terrains. The surface is decomposed into resolved and subgrid-scale height contributions. The effects of the unresolved small-scale height fluctuations are modelled using a local equilibrium wall model (log-law or Monin–Obukhov similarity), but the required hydrodynamic roughness length must be specified. It is expressed as the product of the subgrid-scale root-mean-square of the height distribution and an unknown dimensionless quantity, α, the roughness parameter. Instead of specifying this parameter in an ad hoc empirical fashion, a dynamic methodology is proposed based on test-filtering the surface forces and requiring that the total drag force be independent of filter scale or resolution. This dynamic surface roughness (DSR) model is inspired by the Germano identity traditionally used to determine model parameters for closing subgrid-scale stresses in the bulk of a turbulent flow. A series of LES of fully developed flow over rough surfaces are performed, with surfaces built using random-phase Fourier modes with prescribed power-law spectra. Results show that the DSR model yields well-defined, rapidly converging, values of α. Effects of spatial resolution and spectral slopes are investigated. The accuracy of the DSR model is tested by showing that predicted mean velocity profiles are approximately independent of resolution for the dynamically computed values of α, whereas resolution-dependent results are obtained when using other, incorrect, α values. Also, strong dependence of α on βs is found, where α ranges from α ~ 0.1 for βs = −1.2 to α ~ 10−5 for βs = −3.


2009 ◽  
Vol 643 ◽  
pp. 279-308 ◽  
Author(s):  
D. CHUNG ◽  
D. I. PULLIN

We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation regardless of iteration errors. Whilst some statistics were found to be sensitive to the computational box size, we show, from inner-scaled planar spectra, that the small scales exhibit similarity independent of Reynolds number, density ratio and aspect ratio. We also perform LES of the present flow using the stretched-vortex subgrid-scale (SGS) model. The utility of an SGS scalar flux closure for passive scalars is demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale character of the stretched-vortex SGS model is shown to enable extension of some second-order statistics to subgrid scales. Comparisons with DNS velocity spectra and velocity-density cospectra show that both the resolved-scale and SGS-extended components of the LES spectra accurately capture important features of the DNS spectra, including small-scale anisotropy and the shape of the viscous roll-off.


Sign in / Sign up

Export Citation Format

Share Document