scholarly journals Representing El Niño in Coupled Ocean–Atmosphere GCMs: The Dominant Role of the Atmospheric Component

2004 ◽  
Vol 17 (24) ◽  
pp. 4623-4629 ◽  
Author(s):  
E. Guilyardi ◽  
S. Gualdi ◽  
J. Slingo ◽  
A. Navarra ◽  
P. Delecluse ◽  
...  

Abstract A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectra—toward lower frequency—when the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.

2007 ◽  
Vol 20 (20) ◽  
pp. 5134-5148 ◽  
Author(s):  
Bradfield Lyon ◽  
Simon J. Mason

Abstract Following the onset of the strong El Niño of 1997–98 historical rainfall teleconnection patterns and dynamical model predictions both suggested an enhanced likelihood of drought for southern Africa, but widespread dry conditions failed to materialize. Results from a diagnostic study of NCEP–NCAR reanalysis data are reported here demonstrating how the large- and regional-scale atmospheric circulations during the 1997–98 El Niño differed from previous events. Emphasis is placed on the January–March 1998 season and comparisons with the strong 1982–83 El Niño, although composites of eight events occurring between 1950 and 2000 are also considered. In a companion paper, simulation runs from three atmospheric general circulation models (AGCMs), and forecasts from three fully coupled models are employed to investigate the extent to which the anomalous atmospheric circulation patterns during the 1997–98 El Niño may have been anticipated. Observational results indicate that the 1997–98 El Niño displayed significant differences from both the 1982–83 episode and the composite event. An unusually strong Angola low, exceptionally high sea surface temperatures (SSTs) in the western Indian and eastern tropical South Atlantic Oceans, and an enhanced northerly moisture flux from the continental interior and the western tropical Indian Ocean all appear to have contributed to more seasonal rainfall in 1997–98 over much of the southern Africa subcontinent than in past El Niño events.


2012 ◽  
Vol 25 (9) ◽  
pp. 3321-3335 ◽  
Author(s):  
Masamichi Ohba ◽  
Masahiro Watanabe

Warm and cold phases of El Niño–Southern Oscillation (ENSO) exhibit a significant asymmetry in their transition/duration such that El Niño tends to shift rapidly to La Niña after the mature phase, whereas La Niña tends to persist for up to 2 yr. The possible role of sea surface temperature (SST) anomalies in the Indian Ocean (IO) in this ENSO asymmetry is investigated using a coupled general circulation model (CGCM). Decoupled-IO experiments are conducted to assess asymmetric IO feedbacks to the ongoing ENSO evolution in the Pacific. Identical-twin forecast experiments show that a coupling of the IO extends the skillful prediction of the ENSO warm phase by about one year, which was about 8 months in the absence of the IO coupling, in which a significant drop of the prediction skill around the boreal spring (known as the spring prediction barrier) is found. The effect of IO coupling on the predictability of the Pacific SST is significantly weaker in the decay phase of La Niña. Warm IO SST anomalies associated with El Niño enhance surface easterlies over the equatorial western Pacific and hence facilitate the El Niño decay. However, this mechanism cannot be applied to cold IO SST anomalies during La Niña. The result of these CGCM experiments estimates that approximately one-half of the ENSO asymmetry arises from the phase-dependent nature of the Indo-Pacific interbasin coupling.


2021 ◽  
Author(s):  
Paolo Ruggieri ◽  
Marianna Benassi ◽  
Stefano Materia ◽  
Daniele Peano ◽  
Constantin Ardilouze ◽  
...  

<p>Seasonal climate predictions leverage on many predictable or persistent components of the Earth system that can modify the state of the atmosphere and of relant weather related variable such as temprature and precipitation. With a dominant role of the ocean, the land surface provides predictability through various mechanisms, including snow cover, with particular reference to Autumn snow cover over the Eurasian continent. The snow cover alters the energy exchange between land surface and atmosphere and induces a diabatic cooling that in turn can affect the atmosphere both locally and remotely. Lagged relationships between snow cover in Eurasia and atmospheric modes of variability in the Northern Hemisphere have been investigated and documented but are deemed to be non-stationary and climate models typically do not reproduce observed relationships with consensus. The role of Autumn Eurasian snow in recent dynamical seasonal forecasts is therefore unclear. In this study we assess the role of Eurasian snow cover in a set of 5 operational seasonal forecast system characterized by a large ensemble size and a high atmospheric and oceanic resolution. Results are compemented with a set of targeted idealised simulations with atmospheric general circulation models forced by different snow cover conditions. Forecast systems reproduce realistically regional changes of the surface energy balance associated with snow cover variability. Retrospective forecasts and idealised sensitivity experiments converge in identifying a coherent change of the circulation in the Northern Hemisphere. This is compatible with a lagged but fast feedback from the snow to the Arctic Oscillation trough a tropospheric pathway.</p>


2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Daria Gushchina ◽  
Boris Dewitte

AbstractThe intraseasonal tropical variability (ITV) patterns in the tropical troposphere are documented using double space-time Fourier analysis. Madden and Julian oscillations (MJO) as well as equatorial coupled waves (Kelvin and Rossby) are investigated based on the NCEP/NCAR Reanalysis data for the 1977–2006 period and the outputs of an intermediate ocean-atmosphere coupled model named LODCA-OTCM. A strong seasonal dependence of the ITV/ENSO relationship is evidenced. The leading relationship for equatorial Rossby waves (with the correlation of the same order than for the MJO) is documented; namely, it is shown that intensification of Rossby waves in the central Pacific during boreal summer precedes by half a year the peak of El Niño. The fact that MJO activity in spring-summer is associated to the strength of subsequent El Niño is confirmed. It is shown that LODCA-QTCM is capable of simulating the convectively coupled equatorial waves in outgoing long wave radiation and zonal wind at 850 hPa fields with skill comparable to other Coupled General Circulation Models. The ITV/ENSO relationship is modulated at low frequency. In particular the periods of low ENSO amplitude are associated with weaker MJO activity and a cancellation of MJO at the ENSO development phase. In opposition, during the decaying phase, MJO signal is strong. The periods of strong ENSO activity are associated with a marked coupling between MJO, Kelvin and equatorially Rossby waves and ENSO; the precursor signal of MJO (Rossby waves) in the western (central) Pacific is obvious. The results provide material for the observed change in ENSO characteristics in recent years and question whether the characteristics of the ITV/ENSO relationship may be sensitive to the observed warming in the central tropical Pacific.


A model is being developed for tropical air-sea interaction studies that is intermediate in complexity between the large coupled general circulation models (GCMS) that are coming into use, and the simple two-level models with which pioneering El Nino Southern Oscillation studies were done. The model consists of a stripped-down tropical Pacific Ocean GCM, coupled to an atmospheric model that is sufficiently simple that steady-state solutions may be found for low-level flow and surface stress, given oceanic boundary conditions. This permits examination of the nature of interannual coupled oscillations in the absence of atmospheric noise. In preliminary tests of the model the coupled system is found to undergo a Hopf bifurcation as certain parameters are varied, giving rise to sustained three to four year oscillations. For stronger coupling, a secondary bifurcation yields six month coupled oscillations during the warm phase of the El Nino-period oscillation. Such variability could potentially affect the predictability of the coupled system.


2009 ◽  
Vol 90 (3) ◽  
pp. 325-340 ◽  
Author(s):  
Eric Guilyardi ◽  
Andrew Wittenberg ◽  
Alexey Fedorov ◽  
Mat Collins ◽  
Chunzai Wang ◽  
...  

2010 ◽  
Vol 23 (6) ◽  
pp. 1563-1580 ◽  
Author(s):  
Jaclyn N. Brown ◽  
Alexey V. Fedorov

Abstract The dynamics of El Niño–Southern Oscillation (ENSO) are studied in terms of the balance between energy input from the winds (via wind power) and changes in the storage of available potential energy in the tropical ocean. Presently, there are broad differences in the way global general circulation models simulate the dynamics, magnitude, and phase of ENSO events; hence, there is a need for simple, physically based metrics to allow for model evaluation. This energy description is a basinwide, integral, quantitative approach, ideal for intermodel comparison, that assesses model behavior in the subsurface ocean. Here it is applied to a range of ocean models and data assimilations within ENSO spatial and temporal scales. The onset of an El Niño is characterized by a decrease in wind power that leads to a decrease in available potential energy, and hence a flatter thermocline. In contrast, La Niña events are preceded by an increase in wind power that leads to an increase in the available potential energy and a steeper thermocline. The wind power alters the available potential energy via buoyancy power, associated with vertical mass fluxes that modify the slope of the isopycnals. Only a fraction of wind power is converted to buoyancy power. The efficiency of this conversion γ is estimated in this study at 50%–60%. Once the energy is delivered to the thermocline it is subject to small, but important, diffusive dissipation. It is estimated that this dissipation sets the e-folding damping rate α for the available potential energy on the order of 1 yr−1. The authors propose to use the efficiency γ and the damping rate α as two energy-based metrics for evaluating dissipative properties of the ocean component of general circulation models, providing a simple method for understanding subsurface ENSO dynamics and a diagnostic tool for exploring differences between the models.


2007 ◽  
Vol 20 (10) ◽  
pp. 2273-2298 ◽  
Author(s):  
Hilary Spencer ◽  
Rowan Sutton ◽  
Julia M. Slingo

Abstract Here the factors affecting the mean state and El Niño variability in the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) are examined with and without heat flux or wind stress corrections. There is currently little confidence in the prediction of El Niño for seasonal forecasts or climate change due to the inaccuracies in coupled models. If heat flux or wind stress corrections could reduce these biases then forecasts might be improved. Heat flux corrections have unexpected effects on both the mean state and variability of HadCM3. HadCM3 is found to be very sensitive to the corrections imposed. If heat flux corrections are imposed Tropics wide then easterlies in the eastern equatorial Pacific are increased leading to localized steep east–west gradients in the thermocline or “thermocline jumps,” which appear to suppress propagation of heat from the west to the east and hence suppress strong El Niños so that ENSO variability is weak. In contrast, if heat flux corrections are imposed only within 10° of the equator, an atmospheric teleconnection from the cold subtropical SST biases intensifies the ITCZ and weakens the equatorial easterlies. As a result, the thermocline jumps are flattened and strong El Niños occur very frequently. Neither heat flux correction procedure improves the representation of El Niño. Wind stress corrections alone have a small impact on the coupled model. Some of the SST warm biases are reduced, but the variability is not altered significantly.


Sign in / Sign up

Export Citation Format

Share Document