coupled general circulation models
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Todd Mooring ◽  
Marianna Linz

<p>Petoukhov et al.’s (2013, PNAS) hypothesis of quasi-resonant Rossby waves as a mechanism for destructive weather extremes—both heat- and rain-related, observed and projected—has received a great deal of attention in recent years.  Most notably, it has been used for diagnostic studies of reanalysis products and full-physics atmospheric or coupled general circulation models. However, studies of this sort essentially assume (rather than test) the validity of the underlying theory.</p><p>Since the quasi-resonance theoretical arguments do not explicitly involve the full complexity of atmospheric physics, it ought to be possible to test them within the much simpler framework of an idealized general circulation model. By carefully constructing the forcing fields for such a model, we will achieve control of its zonal mean state and thus the waveguide properties of the zonal jet. We will explore the properties of the quasi-stationary Rossby waves in such simulations to test whether they have the properties predicted by Petoukhov et al. By testing this dynamical mechanism in a simplified model, we can better understand its applicability and limitations for investigations of future climate.</p>


Ocean Science ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Shunya Koseki ◽  
Hervé Giordani ◽  
Katerina Goubanova

Abstract. A diagnostic analysis of the climatological annual mean and seasonal cycle of the Angola–Benguela Frontal Zone (ABFZ) is performed by applying an ocean frontogenetic function (OFGF) to the ocean mixing layer (OML). The OFGF reveals that the meridional confluence and vertical tilting terms are the most dominant contributors to the frontogenesis of the ABFZ. The ABFZ shows a well-pronounced semiannual cycle with two maximum (minimum) peaks in April–May and November–December (February–March and July–August). The development of the two maxima of frontogenesis is due to two different physical processes: enhanced tilting from March to April and meridional confluence from September to October. The strong meridional confluence in September to October is closely related to the seasonal southward intrusion of tropical warm water to the ABFZ that seems to be associated with the development of the Angola Dome northwest of the ABFZ. The strong tilting effect from March to April is attributed to the meridional gradient of vertical velocities, whose effect is amplified in this period due to increasing stratification and shallow OML depth. The proposed OFGF can be viewed as a tool to diagnose the performance of coupled general circulation models (CGCMs) that generally fail at realistically simulating the position of the ABFZ, which leading to huge warm biases in the southeastern Atlantic.


2017 ◽  
Vol 12 (11) ◽  
pp. 114016 ◽  
Author(s):  
Stephanie Gleixner ◽  
Noel S Keenlyside ◽  
Teferi D Demissie ◽  
François Counillon ◽  
Yiguo Wang ◽  
...  

2014 ◽  
Vol 27 (6) ◽  
pp. 2427-2443 ◽  
Author(s):  
Wei Liu ◽  
Zhengyu Liu ◽  
Esther C. Brady

Abstract This paper is concerned with the question: why do coupled general circulation models (CGCM) seem to be biased toward a monostable Atlantic meridional overturning circulation (AMOC)? In particular, the authors investigate whether the monostable behavior of the CGCMs is caused by a bias of model surface climatology. First observational literature is reviewed, and it is suggested that the AMOC is likely to be bistable in the real world in the past and present. Then the stability of the AMOC in the NCAR Community Climate System Model, version 3 (CCSM3) is studied by comparing the present-day control simulation (without flux adjustment) with a sensitivity experiment with flux adjustment. It is found that the monostable AMOC in the control simulation is altered to a bistable AMOC in the flux-adjustment experiment because a reduction of the surface salinity biases in the tropical and northern North Atlantic leads to a reduction of the bias of freshwater transport in the Atlantic. In particular, the tropical bias associated with the double ITCZ reduces salinity in the upper South Atlantic Ocean and, in turn, the AMOC freshwater export, which tends to overstabilize the AMOC and therefore biases the AMOC from bistable toward monostable state. This conclusion is consistent with a further analysis of the stability indicator of two groups of IPCC Fourth Assessment Report (AR4) CGCMs: one without and the other with flux adjustment. Because the tropical bias is a common feature among all CGCMs without flux adjustment, the authors propose that the surface climate bias, notably the tropical bias in the Atlantic, may contribute significantly to the monostability of AMOC behavior in current CGCMs.


2013 ◽  
Vol 118 (2) ◽  
pp. 831-846 ◽  
Author(s):  
Motoki Nagura ◽  
Wataru Sasaki ◽  
Tomoki Tozuka ◽  
Jing-Jia Luo ◽  
Swadhin K. Behera ◽  
...  

2012 ◽  
Vol 41 (5-6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Bo Young Yim ◽  
Yign Noh ◽  
Sang-Wook Yeh ◽  
Jong-Seong Kug ◽  
Hong Sik Min ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document