scholarly journals Ocean Processes Affecting the Twenty-First-Century Shift in ENSO SST Variability

2016 ◽  
Vol 29 (19) ◽  
pp. 6861-6879 ◽  
Author(s):  
Cong Guan ◽  
Michael J. McPhaden

Abstract Sea surface temperature (SST) variability associated with El Niño–Southern Oscillation (ENSO) slightly increased in the central Pacific Ocean but weakened significantly in the eastern Pacific at the beginning of twenty-first century relative to 1980–99. This decadal shift led to the greater prominence central Pacific (CP) El Niño events during the 2000s relative to the previous two decades, which were dominated by eastern Pacific (EP) events. To expand upon previous studies that have examined this shift in ENSO variability, temperature and temperature variance budgets are examined in the mixed layer of the Niño-3 (5°S–5°N, 150°–90°W) and Niño-4 (5°S–5°N, 160°E–150°W) regions from seven ocean model products spanning the period 1980–2010. This multimodel-product-based approach provides a robust assessment of dominant mechanisms that account for decadal changes in two key index regions. A temperature variance budget perspective on the role of thermocline feedbacks in the ENSO cycle based on recharge oscillator theory is also presented. As found in previous studies, thermocline and zonal advective feedbacks are the most important positive feedbacks for generating ENSO SST variance, and thermodynamic damping is the largest negative feedback for damping ENSO variance. Consistent with the shift toward more CP El Niños after 2000, thermocline feedbacks experienced a substantial reduction from 1980 to 1999 and into the 2000s, while zonal advective feedbacks were less affected. Negative feedbacks likewise weakened after 2000, particularly thermal damping in the Niño-3 region and the nonlinear sink of variance in both regions.

2007 ◽  
Vol 20 (20) ◽  
pp. 5164-5177 ◽  
Author(s):  
Ying Li ◽  
Riyu Lu ◽  
Buwen Dong

Abstract In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle. By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.


2021 ◽  
Vol 34 (6) ◽  
pp. 2297-2318
Author(s):  
Daisuke Takasuka ◽  
Masaki Satoh

AbstractAs one of the aspects of the diversity of the Madden–Julian oscillation (MJO), the modulation of initiation regions of the boreal-winter MJO is studied in terms of the relationship between intraseasonal and interannual variabilities. MJOs are categorized as those initiating in the Indian Ocean (IO), Maritime Continent (MC), and western Pacific (WP), referred to herein as IO-MJOs, MC-MJOs, and WP-MJOs, respectively. The composite analyses for each MJO category using observational data reveal that the diversity of MJO initiation regions directly results from the modulation of areas where horizontal advective premoistening efficiently occurs via intraseasonal/synoptic-scale winds. This is supported by the difference in the zonal location of equatorial intraseasonal circulations established before MJO initiation, which is related to a spatial change in background convection and associated Walker circulations forced by interannual sea surface temperature (SST) variability. Compared to IO-MJOs (favored in the climatological background on average), MC-MJOs tend to be realized under the eastern-Pacific El Niño–like condition, as a result of eastward-shifted intraseasonal convection and circulation patterns induced by background suppressed convection in the eastern MC. WP-MJOs are frequently initiated under the central-Pacific El Niño–like and positive IO dipole–like conditions, in which the WP is selectively moistened with the aid of background enhanced (suppressed) convection over the WP (the southeastern IO and the central-to-eastern Pacific). This major tendency derived from sample-limited observations is verified by a set of 15-yr numerical experiments with a global nonhydrostatic MJO-permitting model under a perpetual boreal-winter condition where observation-based SSTs are prescribed.


2017 ◽  
Vol 8 (4) ◽  
pp. 1009-1017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño–Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east–west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–1983 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–2016 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that (i) as a mixed eastern–central Pacific event, the 2015–2016 mountain torque was smaller than for the 1982–1983 and 1997–1998 events, which were pure eastern Pacific events, and (ii) the smaller mountain torque was compensated for by positive friction torques arising from an enhanced Hadley-type circulation in the eastern Pacific, leading to similar AAM–LOD signatures for all three extreme ENSO events. The 2015–2016 event thus contradicts the existing paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.


2011 ◽  
Vol 24 (3) ◽  
pp. 708-720 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines the linkages between leading patterns of interannual sea level pressure (SLP) variability over the extratropical Pacific (20°–60°N) and the eastern Pacific (EP) and central Pacific (CP) types of El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode of the extratropical SLP anomalies represents variations of the Aleutian low, and the second EOF mode represents the North Pacific Oscillation (NPO) and is characterized by a meridional SLP anomaly dipole with a nodal point near 50°N. It is shown that a fraction of the first SLP mode can be excited by both the EP and CP types of ENSO. The SLP response to the EP type is stronger and more immediate. The tropical–extratropical teleconnection appears to act more slowly for the CP ENSO. During the decay phase of EP events, the associated extratropical SLP anomalies shift from the first SLP mode to the second SLP mode. As the second SLP mode grows, subtropical SST anomalies are induced beneath via surface heat flux anomalies. The SST anomalies persist after the peak in strength of the second SLP mode, likely because of the seasonal footprinting mechanism, and lead to the development of the CP type of ENSO. This study shows that the CP ENSO is an extratropically excited mode of tropical Pacific variability and also suggests that the decay of an EP type of ENSO can lead to the onset of a CP type of ENSO with the aid of the NPO. This extratropical linking mechanism appears to be at work during the 1972, 1982, and 1997 strong El Niño events, which were all EP events and were all followed by strong CP La Niña events after the NPO was excited in the extratropics. This study concludes that extratropical SLP variations play an important role in exciting the CP type of ENSO and in linking the transitions from the EP to CP events.


2012 ◽  
Vol 25 (6) ◽  
pp. 2129-2145 ◽  
Author(s):  
Samantha Stevenson ◽  
Baylor Fox-Kemper ◽  
Markus Jochum ◽  
Richard Neale ◽  
Clara Deser ◽  
...  

Abstract The El Niño–Southern Oscillation (ENSO) response to anthropogenic climate change is assessed in the following 1° nominal resolution Community Climate System Model, version 4 (CCSM4) Coupled Model Intercomparison Project phase 5 (CMIP5) simulations: twentieth-century ensemble, preindustrial control, twenty-first-century projections, and stabilized 2100–2300 “extension runs.” ENSO variability weakens slightly with CO2; however, various significance tests reveal that changes are insignificant at all but the highest CO2 levels. Comparison with the 1850 control simulation suggests that ENSO changes may become significant on centennial time scales; the lack of signal in the twentieth- versus twenty-first-century ensembles is due to their limited duration. Changes to the mean state are consistent with previous studies: a weakening of the subtropical wind stress curl, an eastward shift of the tropical convective cells, a reduction in the zonal SST gradient, and an increase in vertical thermal stratification take place as CO2 increases. The extratropical thermocline deepens throughout the twenty-first century, with the tropical thermocline changing slowly in response. The adjustment time scale is set by the relevant ocean dynamics, and the delay in its effect on ENSO variability is not diminished by increasing ensemble size. The CCSM4 results imply that twenty-first-century simulations may simply be too short for identification of significant tropical variability response to climate change. An examination of atmospheric teleconnections, in contrast, shows that the remote influences of ENSO do respond rapidly to climate change in some regions, particularly during boreal winter. This suggests that changes to ENSO impacts may take place well before changes to oceanic tropical variability itself become significant.


2009 ◽  
Vol 66 (4) ◽  
pp. 966-983 ◽  
Author(s):  
A. G. Marshall ◽  
O. Alves ◽  
H. H. Hendon

Abstract The ocean dynamics of the Madden–Julian oscillation (MJO) and its interaction with El Niño–Southern Oscillation (ENSO) are assessed using a flux-corrected coupled model experiment from the Australian Bureau of Meteorology. The model demonstrates the correct oceanic Kelvin wave response to the MJO-related westerly winds in the western Pacific. Although there may be a role for the MJO in influencing the strength of El Niño, its impact is difficult to separate from that of strong heat content preconditioning of ENSO. Hence, the MJO–ENSO relationship is assessed starting from a background state of low heat content anomalies in the western Pacific that are also characteristic of recent observed El Niño events. The model shows a strong relationship between ENSO and the MJO near the peak of El Niño. At this time, the sea surface temperature (SST) anomaly is largest in the central Pacific, and it is difficult to separate cause and effect. Near the onset of El Niño, however, when Pacific Ocean SST anomalies are near zero, an increase in MJO activity is associated with Kelvin wave activity and stronger subsequent ENSO warming. A significant increase in the number of MJO events, rather than the strength of individual MJO events, leads to stronger eastern Pacific warming; the MJO appears not to be responsible for the occurrence of El Niño itself, but, rather, is important for influencing its development thus. This research supports a role for downwelling oceanic Kelvin waves and subsequent deepening of the thermocline in contributing to eastern Pacific warming during the onset of El Niño.


2020 ◽  
Vol 33 (8) ◽  
pp. 3061-3077 ◽  
Author(s):  
Shangfeng Chen ◽  
Wen Chen ◽  
Renguang Wu ◽  
Bin Yu ◽  
Hans-F. Graf

AbstractThe present study reveals a close relation between the interannual variation of Aleutian low intensity (ALI) in March and the subsequent winter El Niño–Southern Oscillation (ENSO). When March ALI is weaker (stronger) than normal, an El Niño (a La Niña)–like sea surface temperature (SST) warming (cooling) tends to appear in the equatorial central-eastern Pacific during the subsequent winter. The physical process linking March ALI to the following winter ENSO is as follows. When March ALI is below normal, a notable atmospheric dipole pattern develops over the North Pacific, with an anticyclonic anomaly over the Aleutian region and a cyclonic anomaly over the subtropical west-central Pacific. The formation of the anomalous cyclone is attributed to feedback of the synoptic-scale eddy-to-mean-flow energy flux and associated vorticity transportation. Specifically, easterly wind anomalies over the midlatitudes related to the weakened ALI are accompanied by a decrease in synoptic-scale eddy activity, which forces an anomalous cyclone to its southern flank. The accompanying westerly wind anomalies over the tropical west-central Pacific induce SST warming in the equatorial central-eastern Pacific during the following summer–autumn via triggering eastward-propagating warm Kelvin waves, which may sustain and develop into an El Niño event during the following winter via positive air–sea feedback. The relation of March ALI with the following winter ENSO is independent of the preceding tropical Pacific SST, the preceding-winter North Pacific Oscillation, and the spring Arctic Oscillation. The results of this analysis may provide an additional source for the prediction of ENSO.


2017 ◽  
Vol 21 (11) ◽  
pp. 5415-5426 ◽  
Author(s):  
Qing Cao ◽  
Zhenchun Hao ◽  
Feifei Yuan ◽  
Zhenkuan Su ◽  
Ronny Berndtsson ◽  
...  

Abstract. This study investigated the influence of five El Niño–Southern Oscillation (ENSO) types on rainy-season precipitation in China: central Pacific warming (CPW), eastern Pacific cooling (EPC), eastern Pacific warming (EPW), conventional ENSO and ENSO Modoki. The multi-scale moving t test was applied to determine the onset and withdrawal of rainy season. Results showed that the precipitation anomaly can reach up to 30 % above average precipitation during decaying CPW and EPW phases. Developing EPW could cause decreasing precipitation over large areas in China with 10–30 % lower than average precipitation in most areas. Conventional El Niño in the developing phase had the largest influence on ENSO-related precipitation among developing ENSO and ENSO Modoki regimes. Decaying ENSO also showed a larger effect on precipitation anomalies, compared to decaying ENSO Modoki. The difference between rainy-season precipitation under various ENSO regimes may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. Stronger monsoon and anti-cyclone are associated with enhanced rainy-season precipitation. The results suggest a certain predictability of rainy-season precipitation related to ENSO regimes.


2017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño/Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east-west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–83 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–16 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that: (i) as a mixed Eastern/Central Pacific event, the 2015–16 mountain torque was smaller than for the 1982–83 and 1997–98 events which were pure Eastern Pacific events, and (ii) the smaller mountain torque was augmented by positive friction torques arising from an enhanced Hadley-type circulation in the Eastern Pacific, leading to similar AAM/LOD signatures for all three extreme ENSO events. The 2015–16 event thus contradicts the dominant paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.


2017 ◽  
Author(s):  
Qing Cao ◽  
Zhenchun Hao ◽  
Feifei Yuan ◽  
Zhenkuan Su ◽  
Ronny Berndtsson ◽  
...  

Abstract. This study investigated the influence of five El Niño‐Southern Oscillation (ENSO) types (i.e., Central Pacific Warming (CPW), Eastern Pacific Cooling (EPC), Eastern Pacific Warming (EPW), conventional ENSO, and ENSO Modoki) on rainy-season precipitation in China. The multi-scale moving t-test was applied to determine the onset and withdrawal of rainy season. Results showed that there is a higher probability for flooding during decaying CPW and EPW phases in most parts of China with a largest precipitation anomaly reaching 30 % above average precipitation. Developing EPW could trigger droughts over large areas in China with 10–30 % lower than average precipitation in most areas. Conventional El Niño in the developing phase had the largest influence on ENSO-related precipitation among developing ENSO and ENSO Modoki regimes. Decaying ENSO also showed larger effect on the occurrence of drought and flood, compared to decaying ENSO Modoki. The difference between rainy-season precipitation under various ENSO regimes may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. Stronger monsoon and anti-cyclone are associated with enhanced rainy-season precipitation. The results suggest a certain predictability of rainy-season precipitation related to ENSO regimes.


Sign in / Sign up

Export Citation Format

Share Document