anomalous cyclone
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Xulong He ◽  
Ruonan Zhang ◽  
Shuoyi Ding ◽  
Zhiyan Zuo

During the past few decades, Arctic sea-ice has declined rapidly in both autumn and winter, which is likely to link extreme weather and climate events across the Northern Hemisphere midlatitudes. Here, we use reanalysis data to investigate the possible linkage between mid–high-latitude atmospheric circulation and Arctic sea-ice loss in different geographical locations and seasons and associated impacts on wintertime climate on interdecadal timescales. Four critical sea-ice subregions are analyzed in this study—namely, the Pan-Arctic, Barents–Kara–Laptev Seas (BKL), East Siberia–Chukchi–Beaufort Seas (EsCB), and Bering Sea (Ber). Results suggest that interdecadal reduction of autumn sea-ice, irrespective of geographical location, is dynamically associated with the negative phase of the North Atlantic Oscillation (NAO) in the subsequent winter via stratospheric pathways. Specifically, autumn sea-ice loss appears to cause a weakened stratospheric polar vortex that propagates to the troposphere in the ensuing months, leading to lower surface air temperature and a deficit in precipitation over Siberia and northeastern North America. Meanwhile, an anomalous cyclone over Europe favors excessive precipitation over southern Europe. For wintertime sea-ice loss in the Pan-Arctic and BKL, a weak positive NAO phase, with a dipole pressure pattern over Greenland–northeastern North America and North Atlantic, and a shrunken Siberian high over Eurasia are observed over mid–high-latitudes. The former results in excessive precipitation over northwestern and southeastern North America, whilst the latter leads to less precipitation and mild winter over Siberia. In contrast, Ber sea-ice loss is associated with a circumglobal wave train downstream of the Bering Sea, leading to extensive warming over Eurasia. The anomalous dipole cyclone and anticyclone over the Bering Sea transport more Pacific and Arctic water vapor to North America, and the anomalous cyclone over the Barents Sea results in abundant precipitation in Siberia. Such midlatitude anomaly is dynamically linked to winter sea-ice loss, mainly through tropospheric rather than stratospheric pathways. These results have important implications for future seasonal and interdecadal forecasts in the context of ongoing sea-ice decline.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixia Meng ◽  
Yong Zhao ◽  
Mingang Li

The effects of sea surface temperature (SST) anomaly in the tropical Indian Ocean (IO) on summer rainfall over central Asia (CA) are investigated using NCEP/NCAR reanalysis circulation data, Hadley Centre SST data, and GPCC gridded precipitation data for 1971–2016. Results show that the SST anomalies over the whole tropical IO play important roles in modulating summer rainfall over southeast CA via the subtropical westerly jet. When the SSTs in the tropical IO are in positive phases, the south Asian monsoon is weakened, which reduces summer rainfall in the Indian monsoon regions corresponding to less release of latent heat. There is an anomalous anticyclone over the Indian Peninsula and an anomalous cyclone in the upper troposphere over CA, corresponding to a shift of the subtropical westerly jet farther south over CA. The southward shift of westerly jet would be responded to anomalous cyclone at 500 hPa over CA and water vapor transported into CA through two steps from the Arabian Sea, above both contribute to more summer rainfall over CA.


2020 ◽  
Vol 33 (8) ◽  
pp. 3061-3077 ◽  
Author(s):  
Shangfeng Chen ◽  
Wen Chen ◽  
Renguang Wu ◽  
Bin Yu ◽  
Hans-F. Graf

AbstractThe present study reveals a close relation between the interannual variation of Aleutian low intensity (ALI) in March and the subsequent winter El Niño–Southern Oscillation (ENSO). When March ALI is weaker (stronger) than normal, an El Niño (a La Niña)–like sea surface temperature (SST) warming (cooling) tends to appear in the equatorial central-eastern Pacific during the subsequent winter. The physical process linking March ALI to the following winter ENSO is as follows. When March ALI is below normal, a notable atmospheric dipole pattern develops over the North Pacific, with an anticyclonic anomaly over the Aleutian region and a cyclonic anomaly over the subtropical west-central Pacific. The formation of the anomalous cyclone is attributed to feedback of the synoptic-scale eddy-to-mean-flow energy flux and associated vorticity transportation. Specifically, easterly wind anomalies over the midlatitudes related to the weakened ALI are accompanied by a decrease in synoptic-scale eddy activity, which forces an anomalous cyclone to its southern flank. The accompanying westerly wind anomalies over the tropical west-central Pacific induce SST warming in the equatorial central-eastern Pacific during the following summer–autumn via triggering eastward-propagating warm Kelvin waves, which may sustain and develop into an El Niño event during the following winter via positive air–sea feedback. The relation of March ALI with the following winter ENSO is independent of the preceding tropical Pacific SST, the preceding-winter North Pacific Oscillation, and the spring Arctic Oscillation. The results of this analysis may provide an additional source for the prediction of ENSO.


2020 ◽  
Vol 33 (7) ◽  
pp. 2907-2923 ◽  
Author(s):  
Tao Wang ◽  
Wenshou Tian ◽  
Jiankai Zhang ◽  
Fei Xie ◽  
Ruhua Zhang ◽  
...  

AbstractUsing various observations, reanalysis datasets, and a general circulation model (CESM-WACCM4), the relationship between the Arctic total column ozone (TCO) and the tropospheric circulation and sea surface temperatures (SSTs) over the western North Pacific (30°–45°N, 130°E–170°W) was investigated. We find that anomalies in the circulation and SSTs over the western North Pacific in June are closely related to anomalies in the Arctic TCO in March; that is, when the Arctic TCO in March decreases, the anomalous tropospheric cyclone and negative SST anomalies (SSTAs) will occur over the western North Pacific in June. Further analysis indicates that the decreased Arctic TCO in March tends to result in positive Victoria mode (VM)-like SSTAs over the North Pacific in April, which persist and develop an anomalous cyclone over the eastern North Pacific in May via atmosphere–ocean coupling. This anomalous cyclone over the eastern North Pacific subsequently induces an anomalous cyclone over the western North Pacific in June via westward-propagating Rossby waves in the lower troposphere. Furthermore, the negative SSTAs over the western North Pacific are enhanced by the anomalous northerly wind related to the anomalous cyclone in June. The effects of increased Arctic TCO in March on the tropospheric circulation and SSTs are almost opposite to those of decreased Arctic TCO. These results are also supported by our numerical simulations. Moreover, 10%–20% of the anomalies in the tropospheric circulation and SSTs over the western North Pacific in June are affected by the anomalies in the Arctic TCO in March.


2020 ◽  
Vol 33 (3) ◽  
pp. 825-846
Author(s):  
Wei Tan ◽  
Zexun Wei ◽  
Qiang Liu ◽  
Qingjun Fu ◽  
Mengyan Chen ◽  
...  

ABSTRACTThis study focuses on different evolutions of the low-level atmospheric circulations between eastern Pacific (EP) El Niño and central Pacific-II (CP-II) El Niño. The western North Pacific anomalous anticyclone (WNPAC) originates from the northern South China Sea for EP El Niño, and moves to the western North Pacific (WNP) afterward. Compared with EP El Niño, the origin of the WNPAC is farther west during CP-II El Niño, with the center over the Indochina Peninsula. Moreover, the WNPAC shows a weaker eastward shift. Such discrepancies are attributed to different evolutions of the cyclonic response over the WNP, which can suppress the convection in the western flank of the anomalous cyclone. The eastward retreat of the anomalous cyclone is significant for EP El Niño, but less evident for CP-II El Niño. These discrepancies are related to zonal evolutions of the increased precipitation over the equatorial Pacific. Following the southward migration of the intertropical convergence zone (ITCZ), the deep-convection region extends eastward along the equator, reinforcing the atmospheric response to the eastern Pacific warming in EP El Niño. For CP-II El Niño, the atmospheric response is insignificant over the eastern Pacific without warming. Moreover, the meridional migration of the ITCZ can modulate zonal variations of the easterly trade wind and specific humidity as well. Due to the combined effects of the climatological background and atmospheric anomalies, the specific humidity–induced and wind-induced moist enthalpy advection contribute to different shifts of the precipitation center.


2019 ◽  
Vol 32 (19) ◽  
pp. 6445-6466
Author(s):  
Jau-Ming Chen ◽  
Ching-Hsuan Wu ◽  
Jianyun Gao ◽  
Pei-Hsuan Chung ◽  
Chung-Hsiung Sui

Abstract This study focuses on the migratory tropical cyclones (TCs) that form in the western North Pacific (WNP) and move into the South China Sea (SCS). Their movements are found to be modulated differently by intraseasonal oscillations (ISOs) and climatological circulations through the TC-active months. The modulating processes of climatological circulations vary from a westward intensifying western Pacific subtropical high (WPSH) in July and August to a southeastward extending monsoon trough (MT) in September, and a strengthening equatorial trough (ET) in October and November. In July and August, enhanced tropical ISO convections in the SCS are accompanied by a 30–60-day anomalous anticyclone to the northeast of the SCS. The migratory TCs move along the southern peripheries of this anomalous anticyclone and the WPSH into the SCS. In September, enhanced ISO convections in the SCS coincide with a meridional 30–60-day circulation pair with an anomalous anticyclone to the north of 20°N and an anomalous cyclone to the south. TCs move in between this meridional 30–60-day circulation pair and the northern periphery of the MT toward the SCS. In October and November, enhanced ISO convections in the SCS and WNP coexist with an overlying 30–60-day anomalous cyclone and an intensified ET. The migratory TCs move along the northern sections of this 30–60-day anomalous cyclone and the ET toward the SCS. With a different track, TCs recurving northward from the tropical WNP into the region east of Taiwan are modulated by completely different variability features of the 30–60-day ISO and climatological circulations.


2014 ◽  
Vol 27 (21) ◽  
pp. 8094-8106 ◽  
Author(s):  
Gang Li ◽  
Chongyin Li ◽  
Yanke Tan ◽  
Xin Wang

Abstract The present study investigates the relationships between the December–February (DJF) South Pacific tripole (SPT) sea surface temperature anomaly (SSTA) pattern and the following March–May (MAM) rainfall over eastern China based on multiple datasets. It is found that the relationships between the DJF SPT and the following MAM rainfall over eastern China are modulated by the El Niño–Southern Oscillation (ENSO). When the ENSO signal is removed, the positive DJF SPT is significantly associated with more rainfall over eastern China during the following boreal spring. However, such significant relationships disappear if ENSO is considered. After removing ENSO impacts, the possible mechanisms through which the DJF SPT impacts the following MAM rainfall over eastern China are investigated. The positive DJF SPT is associated with the significantly positive SSTA in the tropical western Pacific, which can persist to the following MAM. In response to the positive SSTA in the tropical western Pacific, a wave-like train in the low-level troposphere extends from the tropical western Pacific (an anomalous cyclone) to the western North Pacific (an anomalous anticyclone) during the following MAM. The anomalous anticyclone over the western North Pacific enhances the anomalous southwesterly over eastern China, which can bring more moisture and favor anomalous increased rainfall. It should be pointed out that La Niña (El Niño) could induce an anomalous cyclone (anticyclone) over the western North Pacific, which offsets the MAM anomalous anticyclone (cyclone) caused by the positive (negative) SPT in the preceding DJF and thus weakens the relationship between the SPT and the rainfall over eastern China.


2014 ◽  
Vol 27 (12) ◽  
pp. 4721-4732 ◽  
Author(s):  
Yong Zhao ◽  
Anning Huang ◽  
Yang Zhou ◽  
Danqing Huang ◽  
Qing Yang ◽  
...  

Abstract The changes in summer rainfall over the Tarim Basin, China, and the underlying mechanisms have been investigated using the observed rainfall data at 34 stations and the NCEP–NCAR reanalysis data during the period of 1961–2007. Results show that the summer rainfall over the Tarim Basin, which exhibits a significant increasing trend during the last half century, is closely related to the summer middle and upper tropospheric cooling over central Asia. Mechanism analysis indicates that the middle and upper tropospheric cooling over central Asia results in a location farther south of the subtropical westerly jet over western and central Asia with anomalous southerly wind at lower levels and ascending motion prevailing over the Tarim Basin. Such anomalies in the atmospheric circulations provide favorable conditions for the enhanced summer rainfall over the Tarim Basin. Further analysis suggests that the weakened South Asian summer monsoon (SASM) could be potentially responsible for the middle and upper tropospheric cooling over central Asia. This is largely through the atmospheric responses to the diabatic heating effect of the SASM. A weakened SASM can result in an anomalous cyclone in the middle and upper troposphere over central Asia. The western part of the anomalous cyclone produces more cold air advection, which leads to the cooling. This study suggests indirect but important effects of the SASM on the summer rainfall over the Tarim Basin.


2012 ◽  
Vol 25 (19) ◽  
pp. 6539-6553 ◽  
Author(s):  
Lixia Zhang ◽  
Tianjun Zhou

Abstract By using 55-yr NCEP–NCAR reanalysis data, two dominant interannual variability modes of summer upper-tropospheric (500–200 hPa) temperature over East Asia are identified. The first empirical orthogonal function (EOF1) mode in its positive sign features a monopole cooling anomaly, while the second mode (EOF2) features a meridional dipole mode, with the positive (negative) center located south (north) of 35°N. The EOF1 (EOF2) mode is associated with ENSO developing (decaying) summers. They are the result of dynamical teleconnections remotely induced by ENSO and local moist processes. During the El Niño developing summer, the Indian summer monsoon precipitation decreases and forces the Silk Road teleconnection pattern at 200 hPa, featuring an anomalous cyclone over the East Asian continent. Coupled with the anomalous northerly wind in eastern China at 850 hPa, rainfall over north (south) China is suppressed (enhanced). The anomalous cyclone in the upper troposphere, associated vertical motion, and precipitation contribute to the heat and vorticity balance and maintain the monopole cooling. In the El Niño decaying summer, driven by the combined effects of a local SST anomaly and remote warm SST anomaly forcing from the Indian Ocean, precipitation is reduced over the western Pacific Ocean. Less latent heat is released and forces the Pacific–Japan teleconnection pattern along the East Asian continent, inducing a tripolar rainfall anomaly over East Asia. The tripolar precipitation and vertical motion anomalies and the zonal extended cyclonic anomaly in the upper troposphere provide the heating and momentum flux balance and maintain the temperature anomaly pattern during the ENSO decaying summer.


Sign in / Sign up

Export Citation Format

Share Document