scholarly journals Atmospheric torques and Earth's rotation: what drove the millisecond-level length-of-day response to the 2015–2016 El Niño?

2017 ◽  
Vol 8 (4) ◽  
pp. 1009-1017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño–Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east–west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–1983 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–2016 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that (i) as a mixed eastern–central Pacific event, the 2015–2016 mountain torque was smaller than for the 1982–1983 and 1997–1998 events, which were pure eastern Pacific events, and (ii) the smaller mountain torque was compensated for by positive friction torques arising from an enhanced Hadley-type circulation in the eastern Pacific, leading to similar AAM–LOD signatures for all three extreme ENSO events. The 2015–2016 event thus contradicts the existing paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.

2017 ◽  
Author(s):  
Sébastien B. Lambert ◽  
Steven L. Marcus ◽  
Olivier de Viron

Abstract. El Niño/Southern Oscillation (ENSO) events are classically associated with a significant increase in the length of day (LOD), with positive mountain torques arising from an east-west pressure dipole in the Pacific driving a rise of atmospheric angular momentum (AAM) and consequent slowing of the Earth's rotation. The large 1982–83 event produced a lengthening of the day of about 0.9 ms, while a major ENSO event during the 2015–16 winter season produced an LOD excursion reaching 0.81 ms in January 2016. By evaluating the anomaly in mountain and friction torques, we found that: (i) as a mixed Eastern/Central Pacific event, the 2015–16 mountain torque was smaller than for the 1982–83 and 1997–98 events which were pure Eastern Pacific events, and (ii) the smaller mountain torque was augmented by positive friction torques arising from an enhanced Hadley-type circulation in the Eastern Pacific, leading to similar AAM/LOD signatures for all three extreme ENSO events. The 2015–16 event thus contradicts the dominant paradigm that mountain torques cause the Earth rotation response for extreme El Niño events.


2015 ◽  
Vol 11 (10) ◽  
pp. 1325-1333 ◽  
Author(s):  
K. Schollaen ◽  
C. Karamperidou ◽  
P. Krusic ◽  
E. Cook ◽  
G. Helle

Abstract. Indonesia's climate is dominated by the equatorial monsoon system, and has been linked to El Niño-Southern Oscillation (ENSO) events that often result in extensive droughts and floods over the Indonesian archipelago. In this study we investigate ENSO-related signals in a tree-ring δ18O record (1900–2007) of Javanese teak. Our results reveal a clear influence of Warm Pool (central Pacific) El Niño events on Javanese tree-ring δ18O, and no clear signal of Cold Tongue (eastern Pacific) El Niño events. These results are consistent with the distinct impacts of the two ENSO flavors on Javanese precipitation, and illustrate the importance of considering ENSO flavors when interpreting palaeoclimate proxy records in the tropics, as well as the potential of palaeoclimate proxy records from appropriately selected tropical regions for reconstructing past variability of. ENSO flavors.


2011 ◽  
Vol 24 (3) ◽  
pp. 708-720 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines the linkages between leading patterns of interannual sea level pressure (SLP) variability over the extratropical Pacific (20°–60°N) and the eastern Pacific (EP) and central Pacific (CP) types of El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode of the extratropical SLP anomalies represents variations of the Aleutian low, and the second EOF mode represents the North Pacific Oscillation (NPO) and is characterized by a meridional SLP anomaly dipole with a nodal point near 50°N. It is shown that a fraction of the first SLP mode can be excited by both the EP and CP types of ENSO. The SLP response to the EP type is stronger and more immediate. The tropical–extratropical teleconnection appears to act more slowly for the CP ENSO. During the decay phase of EP events, the associated extratropical SLP anomalies shift from the first SLP mode to the second SLP mode. As the second SLP mode grows, subtropical SST anomalies are induced beneath via surface heat flux anomalies. The SST anomalies persist after the peak in strength of the second SLP mode, likely because of the seasonal footprinting mechanism, and lead to the development of the CP type of ENSO. This study shows that the CP ENSO is an extratropically excited mode of tropical Pacific variability and also suggests that the decay of an EP type of ENSO can lead to the onset of a CP type of ENSO with the aid of the NPO. This extratropical linking mechanism appears to be at work during the 1972, 1982, and 1997 strong El Niño events, which were all EP events and were all followed by strong CP La Niña events after the NPO was excited in the extratropics. This study concludes that extratropical SLP variations play an important role in exciting the CP type of ENSO and in linking the transitions from the EP to CP events.


2017 ◽  
Vol 30 (13) ◽  
pp. 4819-4842 ◽  
Author(s):  
Young-Kwon Lim ◽  
Robin M. Kovach ◽  
Steven Pawson ◽  
Guillaume Vernieres

The 2015/16 El Niño is analyzed using atmospheric and oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of this work is to compare and contrast it with two other strong El Niños, in 1982/83 and 1997/98. These three El Niño events are included in the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Niño events. Various atmospheric and oceanic structures indicate that the 2015/16 El Niño maximized in the Niño-3.4 region, with a large region of warming over most of the Pacific and Indian Oceans. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. Whereas the 2015/16 El Niño had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/98 event exhibited a more rapid growth due to stronger westerly wind bursts and the Madden–Julian oscillation during spring, making it the strongest El Niño in the eastern Pacific. Compared to 1982/83 and 1997/98, the 2015/16 event had a shallower thermocline over the eastern Pacific with a weaker zonal contrast of subsurface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each is unique when looking at the atmosphere and ocean surface and subsurface.


2015 ◽  
Vol 12 (6) ◽  
pp. 4405-4431 ◽  
Author(s):  
A. Olchev ◽  
A. Ibrom ◽  
O. Panferov ◽  
D. Gushchina ◽  
P. Propastin ◽  
...  

Abstract. The possible impact of El Niño–Southern Oscillation (ENSO) events on the main components of CO2 and H2O fluxes in a pristine mountainous tropical rainforest growing in Central Sulawesi in Indonesia is described. The fluxes were continuously measured using the eddy covariance method for the period from January 2004 to June 2008. During this period, two episodes of El Niño and one episode of La Niña were observed. All these ENSO episodes had moderate intensity and were of Central Pacific type. The temporal variability analysis of the main meteorological parameters and components of CO2 and H2O exchange showed a very high sensitivity of Evapotranspiration (ET) and Gross Primary Production (GPP) of the tropical rain forest to meteorological variations caused by both El Niño and La Niña episodes. Incoming solar radiation is the main governing factor that is responsible for ET and GPP variability. Ecosystem Respiration (RE) dynamics depend mainly on the air temperature changes and are almost insensitive to ENSO. Changes of precipitation due to moderate ENSO events did not cause any notable effect on ET and GPP, mainly because of sufficient soil moisture conditions even in periods of anomalous reduction of precipitation in the region.


2020 ◽  
Author(s):  
◽  
Mohammad Alam

Westerly wind bursts (WWBs), usually occurring in the tropical Pacific region, play a vital role in El Niño–Southern Oscillation (ENSO). In this study, we use a hybrid coupled model (HCM) for the tropical Pacific Ocean-atmosphere system to investigate WWBs impact on ENSO. To achieve this goal, two experiments are performed: (a) first, the standard version of the HCM is integrated for years without prescribed WWBs events; and (b) second, the WWBs are added into the HCM (HCM-WWBs). Results show that HCM-WWBs can generate not only more realistic climatology of sea surface temperature (SST) in both spatial structure and temporal amplitudes, but also better ENSO features, than the HCM. In particular, the HCM-WWBs can capture the central Pacific (CP) ENSO events, which is absent in original HCM. Furthermore, the possible physical mechanisms responsible for these improvements by WWBs are discussed.


2020 ◽  
Vol 33 (19) ◽  
pp. 8237-8260 ◽  
Author(s):  
Mandy B. Freund ◽  
Josephine R. Brown ◽  
Benjamin J. Henley ◽  
David J. Karoly ◽  
Jaclyn N. Brown

AbstractGiven the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.


2009 ◽  
Vol 66 (4) ◽  
pp. 966-983 ◽  
Author(s):  
A. G. Marshall ◽  
O. Alves ◽  
H. H. Hendon

Abstract The ocean dynamics of the Madden–Julian oscillation (MJO) and its interaction with El Niño–Southern Oscillation (ENSO) are assessed using a flux-corrected coupled model experiment from the Australian Bureau of Meteorology. The model demonstrates the correct oceanic Kelvin wave response to the MJO-related westerly winds in the western Pacific. Although there may be a role for the MJO in influencing the strength of El Niño, its impact is difficult to separate from that of strong heat content preconditioning of ENSO. Hence, the MJO–ENSO relationship is assessed starting from a background state of low heat content anomalies in the western Pacific that are also characteristic of recent observed El Niño events. The model shows a strong relationship between ENSO and the MJO near the peak of El Niño. At this time, the sea surface temperature (SST) anomaly is largest in the central Pacific, and it is difficult to separate cause and effect. Near the onset of El Niño, however, when Pacific Ocean SST anomalies are near zero, an increase in MJO activity is associated with Kelvin wave activity and stronger subsequent ENSO warming. A significant increase in the number of MJO events, rather than the strength of individual MJO events, leads to stronger eastern Pacific warming; the MJO appears not to be responsible for the occurrence of El Niño itself, but, rather, is important for influencing its development thus. This research supports a role for downwelling oceanic Kelvin waves and subsequent deepening of the thermocline in contributing to eastern Pacific warming during the onset of El Niño.


2010 ◽  
Vol 6 (3) ◽  
pp. 905-961
Author(s):  
J. H. Duke

Abstract. A sporadic phenomenon of internal tide resonance (ITR) in the western equatorial Pacific thermocline is shown to precede 11 of 12 major upturns in the Niño 3.4 index between 1992 and 2008. Observed ITR has up to 9 °C semidiurnal temperature excursions indicating thermocline heave, but is invisible in time resolution longer than one day. It is independent of westerly wind bursts (WWB). A hypothesis is advanced that (1) ITR dissipates vorticity, leading to Pacific countercurrent consolidation (PCC) by reducing the vortex stretching term in Sverdrup balance. The consequence of lost vorticity survives ephemeral ITR events; (2) The specific surface area of countercurrents is reduced by PCC, which reduces frictional opposition to zonal gradient pressure, which triggers eastward advection at El Niño onset; (3) PCC also accelerates transfer of potential energy to the "pycnostad" below the Equatorial Undercurrent. This shoals the equatorial thermocline, leading to a distinct mode of equatorially symmetric La Niña (ESLN) characterized by a winter monsoon cell above a "cold eye" that is separated from the South American continent, as in 1998; (4) Precessional southward intertropical convergence zone migration (ITCZ) is an alternate PCC trigger, but its effect is modulated by obliquity; and (5) ESLN causes global cooling in all timescales by (a) reduced Hadley cell water vapor production when its rising branch is above the cold eye, (b) equatorward shift in southern circumpolar westerlies due to Hadley cell constriction, (c) possible CO2 sequestration by increased EUC iron fertilized export production on the equator, and (d) possible adjacent cloud seeding by biogenic dimethyl sulphide. Surprising coincidences of WWB with perigean eclipses suggest a parallel atmospheric tide influence. Proposed PCC-ESLN forcing operates in multiple timescales, beginning where the annual cycle of strong equinoctial tides coincides with the minimum perigee cycle. This forcing corresponds with El Niño Southern Oscillation (ENSO) events in 1997, 2002, and 2006. Next, extreme central eclipses that perturb perigee-sysygy intervals also correspond with extreme ENSO events, notably in 1877, 1888, and 1982, and a 586 year cycle in the frequency of these eclipses corresponds with known stadial events in the past 4 thousand years. Contrast in the 586 year cycle increases with Earth eccentricity because it is the result of shorter synodic months at aphelion. Longer timescale forcing is by orbital control of the east-central Pacific ITCZ position, yielding a 10 thousand year fast ice sheet melt interval between March and September perihelion. But default ESLN is only interrupted when perihelion in March coincides with rising obliquity. A change in the phase relation between obliquity and precession from 1:2 to 3:5 or 2:5 may therefore explain skipped obliquity cycles after the mid-Pleistocene transition. A secular improvement in eclipse commensurability that parallels Cenozoic cooling is noted.


Sign in / Sign up

Export Citation Format

Share Document