Recent Trends in Land Surface Temperature on the Tibetan Plateau

2006 ◽  
Vol 19 (12) ◽  
pp. 2995-3003 ◽  
Author(s):  
Yuichiro Oku ◽  
Hirohiko Ishikawa ◽  
Shigenori Haginoya ◽  
Yaoming Ma

Abstract The diurnal, seasonal, and interannual variations in land surface temperature (LST) on the Tibetan Plateau from 1996 to 2002 are analyzed using the hourly LST dataset obtained by Japanese Geostationary Meteorological Satellite 5 (GMS-5) observations. Comparing LST retrieved from GMS-5 with independent precipitation amount data demonstrates the consistent and complementary relationship between them. The results indicate an increase in the LST over this period. The daily minimum has risen faster than the daily maximum, resulting in a narrowing of the diurnal range of LST. This is in agreement with the observed trends in both global and plateau near-surface air temperature. Since the near-surface air temperature is mainly controlled by LST, this result ensures a warming trend in near-surface air temperature.

2020 ◽  
Author(s):  
Zheng Guo ◽  
Miaomiao Cheng

<p>Diurnal temperature range (includes land surface temperature diurnal range and near surface air temperature diurnal range) is an important meteorological parameter, which is a very important factor in the field of the urban thermal environmental. Nowadays, the research of urban thermal environment mainly focused on surface heat island and canopy heat island.</p><p>Based on analysis of the current status of city thermal environment. Firstly, a method was proposed to obtain near surface air temperature diurnal range in this study, difference of land surface temperature between day and night were introduced into the improved temperature vegetation index feature space based on remote sensing data. Secondly, compared with the district administrative division, we analyzed the spatial and temporal distribution characteristics of the diurnal range of land surface temperature and near surface air temperature.</p><p>The conclusions of this study are as follows:</p><p>1 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing were fluctuating upward. The rising trend of the near surface air temperature diurnal range was more significant than land surface temperature diurnal range. In addition, the rise and decline of land surface temperature and near surface air temperature diurnal range in different districts were different. In the six city districts, the land surface temperature and near surface air temperature diurnal range in the six areas of the city were mainly downward. The decline trend of near surface air temperature diurnal range was more significant than land surface temperature diurnal range.</p><p>2 During 2003-2012s, the land surface temperature and near surface air temperature diurnal range of Beijing with similar characteristics in spatial distribution, with higher distribution land surface temperature and near surface air temperature diurnal range in urban area and with lower distribution of land surface temperature and near surface air temperature diurnal range in the Northwest Mountainous area and the area of Miyun reservoir.</p>


2015 ◽  
Vol 12 (8) ◽  
pp. 7665-7687 ◽  
Author(s):  
C. L. Pérez Díaz ◽  
T. Lakhankar ◽  
P. Romanov ◽  
J. Muñoz ◽  
R. Khanbilvardi ◽  
...  

Abstract. Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.


2020 ◽  
Vol 12 (8) ◽  
pp. 1271 ◽  
Author(s):  
Tao Sun ◽  
Ranhao Sun ◽  
Liding Chen

The credible urban heat island (UHI) trend is crucial for assessing the effects of urbanization on climate. Land surface temperature (LST) and near surface air temperature (SAT) have been extensively used to obtain UHI intensities. However, the consistency of UHI trend between LST and SAT has rarely been discussed. This paper quantified the temporal stability and trend consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) LST and in situ SAT. Linear regressions, temporal trends and coefficients of variations (CV) were analyzed based on the yearly mean, maximum and minimum temperatures. The findings in this study were: (1) Good statistical consistency (R2 = 0.794) and the same trends were found only in mean temperature between LST-UHI and SAT-UHI. There are 54% of cities that showed opposite temporal trends between LST-UHI and SAT-UHI for minimum temperature while the percentage was 38% for maximum temperature. (2) The high discrepancies in temporal trends were observed for all cities, which indicated the inadequacy of LST for obtaining reliable UHI trends especially when using the maximum and minimum temperatures. (3) The larger uncertainties of LST-UHI were probably due to high inter-annual fluctuations of LST. The topography was the predominant factor that affected the UHI variations for both LST and SAT. Therefore, we suggested that SAT should be combined with LST to ensure the dependable temporal series of UHI. This paper provided references for understanding the UHI effects on various surfaces.


2020 ◽  
Vol 12 (11) ◽  
pp. 1722
Author(s):  
Mingxi Zhang ◽  
Bin Wang ◽  
James Cleverly ◽  
De Li Liu ◽  
Puyu Feng ◽  
...  

The Tibetan Plateau has been undergoing accelerated warming over recent decades, and is considered an indicator for broader global warming phenomena. However, our understanding of warming rates with elevation in complex mountain regions is incomplete. The most serious concern is the lack of high-quality near-surface air temperature (Tair) datasets in these areas. To address this knowledge gap, we developed an automated mapping framework for the estimation of seamless daily minimum and maximum Land Surface Temperatures (LSTs) for the Tibetan Plateau from the existing MODIS LST products for a long period of time (i.e., 2002–present). Specific machine learning methods were developed and linked with target-oriented validation and then applied to convert LST to Tair. Spatial variables in retrieving Tair, such as solar radiation and vegetation indices, were used in estimation of Tair, whereas MODIS LST products were mainly focused on temporal variation in surface air temperature. We validated our process using independent Tair products, revealing more reliable estimates on Tair; the R2 and RMSE at monthly scales generally fell in the range of 0.9–0.95 and 1–2 °C. Using these continuous and consistent Tair datasets, we found temperature increases in the elevation range between 2000–3000 m and 4000–5000 m, whereas the elevation interval at 6000–7000 m exhibits a cooling trend. The developed datasets, findings and methodology contribute to global studies on accelerated warming.


2020 ◽  
Author(s):  
Xin Wen ◽  
Ji Zhou ◽  
Xiaodong Zhang ◽  
Jin Ma

<p>Over the past several decades, global climate change, particularly the rising temperature has caused public concerns. In the context of climate warming, many environmental and water problems such as decreasing runoff, shrinking glaciers and permafrost, vegetation degradation and desertification can be attributed to rapid climate change. Surface air temperature (SAT) plays a key role in land-atmospheric interactions and is an important parameter for climate change studies. Traditional SAT data are collected by ground meteorological observation. Nevertheless, such traditional measurements at ground stations cannot capture the spatial variations of SAT, especially over complicated areas such as the Tibetan Plateau, where meteorological stations are with large elevation variability and unreasonable spatial distribution. In contrast, satellite remote sensing provides an direct observation of land surface temperature (LST) and, thus, also provides an possible way to obtain SAT since LST and SAT are generally closely related to each other. The scientific communities have developed various methods to estimate SAT from LST through statistical or physical models. The widely used satellite LST, however, is derived from satellite thermal infrared remote sensing and thus, significantly affected by the clouds.</p><p>In this study, we report an examination of the estimation of daily 1-km SAT from the all-weather satellite LST over the Tibetan Plateau. The estimation of SAT is based on a noval method that dynamicall integrates the newly published 1-km all-weather LST data by merging satellite thermal infrared and microwave remote sensing observations based on the random forest. The matchups of the ground measured SAT at stations and the corresponding all-weather LST were separated into the training set and valiation set. In addition, independent SAT measured at experimental ground sites were used to evaluate the SAT method. Results indicate that reasonably integrating multiple LST terms provides daily average all-weather SAT with satisfactory accuracies over the Tibetan Plateau. The estimated SAT based on the proposed method has ignorable systematic error and low root-mean squared error when validated with ground measured SAT under all-weather conditions. Further comparison demonstrates that the SAT estimate agree well with other SAT estimated from satellite thermal infrared LST under cloud-free condition. In addition, the SAT method has the potential to be generalized and extended to various complicated areas. With this method, the daily 1-km SAT for the entire Tibetan Plateau from 2003 to 2018 were produced. This dataset is of great value to examine recent climate warming trend and the land-atmospheirc interactions in the entire Tibetan Plateau.</p>


Sign in / Sign up

Export Citation Format

Share Document