land surface temperatures
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 65)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Vol 9 (2) ◽  
pp. 3329-3339
Author(s):  
Harsha Dahanayake ◽  
Deepthi Wickramasinghe ◽  
DDGL Dahanayaka

Microclimate regulation is one of the most significant ecosystem services provided by wetlands. The present study attempted to investigate the cooling effect provided by Muthurajawela, a coastal Ramsar wetland using Remote Sensing and GIS. The variation of Land Surface Temperatures (LST) over different land use categories of natural (water bodies, marsh, thick vegetation, grassland) and anthropogenic (built-up areas, coconut cultivations and bare lands) areas in 2015 and 2020. Parameters including Satellite Brightness Temperature, Normalized Difference Vegetation Index, Proportion of Vegetation and Land Surface Emissivity were calculated along eight transects starting from the center of the water body and extending up to 5 km from the boundary of the wetland. The results revealed that LST over areas under natural land cover (2015 - mean 25.040C, 2020 - mean 23.360C) were significantly lower than that of areas under anthropogenic influence (2015 - mean 26.520C and 2020 - mean 26.220C). The lowest increase of LST was over the water body and the highest was over the built-up areas indicating the buffering capacity of wetlands. As air temperatures are highly linked to LST, our findings suggest that wetlands contribute to lower atmospheric temperature and offer cooling effects during dry months. Acknowledging the importance of wetlands in reducing temperature, at least in a local scale, justifies the need of conserving these ecosystems, as seeking mitigatory measures for climate change driven frequent heating effects is challenging.


Author(s):  
Дмитрий Владимирович Сарычев ◽  
Ирина Владимировна Попова ◽  
Семен Александрович Куролап

Рассмотрены вопросы мониторинга теплового загрязнения окружающей среды в городах. Представлена методика отбора спектрозональных спутниковых снимков, их обработки и интерпретации полученных результатов. Для оценки городского острова тепла были использованы снимки с космического аппарата Landsat 8 TIRS. На их основе построены карты пространственной структуры острова тепла города Воронежа за летний и зимний периоды. Определены тепловые аномалии и выявлено 11 основных техногенных источников теплового загрязнения в г. Воронеже, установлена их принадлежность к промышленным зонам предприятий, а также к очистным гидротехническим сооружениям. Поверхностные температуры данных источников в среднем были выше фоновых температур приблизительно на 6° зимой и на 15,5° С летом. Синхронно со спутниковой съемкой были проведены наземные контрольные тепловизионные измерения температур основных подстилающих поверхностей в г. Воронеже. Полученные данные показали высокую сходимость космических и наземных измерений, на основании чего сделан вывод о надежности используемых данных дистанционного зондирования Земли в мониторинговых наблюдениях теплового загрязнения городской среды. Результаты работ могут найти применение в городском планировании и медицинской экологии. The study deals with the remote sensing and monitoring of urban heat islands. We present a methodology of multispectral satellite imagery selection and processing. The study bases on the freely available Landsat 8 TIRS data. We used multitemporal thermal band combinations to make maps of the urban heat island of Voronezh (Russia) during summer and winter periods. That let us identify 11 artificial sources of heat in Voronezh. All of them turned out to be allocated within industrial zones of plants and water treatment facilities. Land surface temperatures (LST) of these sources were approximately 6° and 15.5° C above the background temperatures in winter and summer, respectively. To prove the remotely sensed temperatures we conducted ground control measurements of LST of different surface types at the satellite revisit moments. Our results showed a significant correlation between the satellite and ground-based measurements, so the maps we produced in this study should be robust. They are of use in urban planning and medical ecology studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Schwaab ◽  
Ronny Meier ◽  
Gianluca Mussetti ◽  
Sonia Seneviratne ◽  
Christine Bürgi ◽  
...  

AbstractUrban trees influence temperatures in cities. However, their effectiveness at mitigating urban heat in different climatic contexts and in comparison to treeless urban green spaces has not yet been sufficiently explored. Here, we use high-resolution satellite land surface temperatures (LSTs) and land-cover data from 293 European cities to infer the potential of urban trees to reduce LSTs. We show that urban trees exhibit lower temperatures than urban fabric across most European cities in summer and during hot extremes. Compared to continuous urban fabric, LSTs observed for urban trees are on average 0-4 K lower in Southern European regions and 8-12 K lower in Central Europe. Treeless urban green spaces are overall less effective in reducing LSTs, and their cooling effect is approximately 2-4 times lower than the cooling induced by urban trees. By revealing continental-scale patterns in the effect of trees and treeless green spaces on urban LST our results highlight the importance of considering and further investigating the climate-dependent effectiveness of heat mitigation measures in cities.


2021 ◽  
Vol 13 (22) ◽  
pp. 12678
Author(s):  
Dakota McCarty ◽  
Jaekyung Lee ◽  
Hyun Woo Kim

The urban heat island effect has been studied extensively by many researchers around the world with the process of urbanization coming about as one of the major culprits of the increasing urban land surface temperatures. Over the past 20 years, the city of Dallas, Texas, has consistently been one of the fastest growing cities in the United States and has faced rapid urbanization and great amounts of urban sprawl, leading to an increase in built-up surface area. In this study, we utilize Landsat 8 satellite images, Geographic Information System (GIS) technologies, land use/land cover (LULC) data, and a state-of-the-art methodology combining machine learning algorithms (eXtreme Gradient Boosted models, or XGBoost) and a modern game theoretic-based approach (Shapley Additive exPlanation, or SHAP values) to investigate how different land use/land cover classifications impact the land surface temperature and park cooling effects in the city of Dallas. We conclude that green spaces, residential, and commercial/office spaces have the largest impacts on Land Surface Temperatures (LST) as well as the Park’s Cooling Intensity (PCI). Additionally, we have found that the extent and direction of influence of these categories depends heavily on the surrounding area. By using SHAP values we can describe these interactions in greater detail than previous studies. These results will provide an important reference for future urban and park placement planning to minimize the urban heat island effect, especially in sprawling cities.


2021 ◽  
Vol 13 (17) ◽  
pp. 3522
Author(s):  
Thomas P. F. Dowling ◽  
Peilin Song ◽  
Mark C. De Jong ◽  
Lutz Merbold ◽  
Martin J. Wooster ◽  
...  

Satellite-derived land surface temperature (LST) data are most commonly observed in the longwave infrared (LWIR) spectral region. However, such data suffer frequent gaps in coverage caused by cloud cover. Filling these ‘cloud gaps’ usually relies on statistical re-constructions using proximal clear sky LST pixels, whilst this is often a poor surrogate for shadowed LSTs insulated under cloud. Another solution is to rely on passive microwave (PM) LST data that are largely unimpeded by cloud cover impacts, the quality of which, however, is limited by the very coarse spatial resolution typical of PM signals. Here, we combine aspects of these two approaches to fill cloud gaps in the LWIR-derived LST record, using Kenya (East Africa) as our study area. The proposed “cloud gap-filling” approach increases the coverage of daily Aqua MODIS LST data over Kenya from <50% to >90%. Evaluations were made against the in situ and SEVIRI-derived LST data respectively, revealing root mean square errors (RMSEs) of 2.6 K and 3.6 K for the proposed method by mid-day, compared with RMSEs of 4.3 K and 6.7 K for the conventional proximal-pixel-based statistical re-construction method. We also find that such accuracy improvements become increasingly apparent when the total cloud cover residence time increases in the morning-to-noon time frame. At mid-night, cloud gap-filling performance is also better for the proposed method, though the RMSE improvement is far smaller (<0.3 K) than in the mid-day period. The results indicate that our proposed two-step cloud gap-filling method can improve upon performances achieved by conventional methods for cloud gap-filling and has the potential to be scaled up to provide data at continental or global scales as it does not rely on locality-specific knowledge or datasets.


2021 ◽  
Vol 13 (16) ◽  
pp. 3283
Author(s):  
Wen He ◽  
Shisong Cao ◽  
Mingyi Du ◽  
Deyong Hu ◽  
You Mo ◽  
...  

Identifying the driving factors of urban land surface temperatures (U-LSTs) is critical in improving urban thermal environments and in supporting the sustainable development of cities. Previous studies have demonstrated that two- and three-dimensional (2D and 3D) urban structure parameters (USPs) largely influence seasonal U-LSTs. However, the effects of 2D and 3D USPs on seasonal U-LSTs at different spatial scales still await a general explanation. In this study, we used very-high-resolution remotely sensed data to investigate how 2D and 3D USPs impact seasonal U-LSTs at different spatial scales (including pixel and city block scales). In addition, the influences of various functional zones on U-LSTs were analyzed. The results show that, (1) generally, the links between USPs and U-LSTs at the city block scale were more obvious than those at the pixel scale, e.g., the Pearson correlation coefficient (r) between U-LST and the mean building height at the city block scale (summer: r = −0.156) was higher than that at the pixel scale (summer: r = −0.081). Tree percentage yielded a considerable cooling effect on summer U-LSTs on both the pixel (r = −0.199) and city block (r = −0.369) scales, and the effect was more obvious in regions with tall trees. (2) The independently total explained variances (R2) of 3D USPs on seasonal U-LSTs were considerably higher than those of 2D USPs in most urban functional zones (UFZs), suggesting the distinctive roles of 3D USPs in U-LST regulation at the local scale. Three-dimensional USPs (R2 value = 0.66) yielded more decisive influences on summer U-LSTs than 2D USPs did (R2 value = 0.48). (3) Manufacturing zones yielded the highest U-LST, followed by residential and commercial zones. Notably, it is found that the explained variances of the total study area for seasonal U-LSTs were significantly lower than those of each UFZ, suggesting the different roles of 2D and 3D USPs played in various UFZs and that it is critical to explain U-LST variations by using UFZs.


Ecosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Xiaoting Li ◽  
Wei Guo ◽  
Shuheng Li ◽  
Junzhe Zhang ◽  
Xiangnan Ni

Sign in / Sign up

Export Citation Format

Share Document