A Diagnostic Study of the Indian Ocean Dipole Mode in El Niño and Non–El Niño Years

2007 ◽  
Vol 20 (13) ◽  
pp. 2961-2977 ◽  
Author(s):  
Hae-Kyung Lee Drbohlav ◽  
Silvio Gualdi ◽  
Antonio Navarra

Abstract The Indian Ocean dipole mode (IODM) is examined by comparing the characteristics of oceanic and atmospheric circulations, heat budgets, and possible mechanisms of IODM between El Niño and non–El Niño years. Forty-year ECMWF Re-Analysis (ERA-40) data, Reynolds SST data, and ocean assimilation data from the Modular Ocean Model are used to form composites of the IODM that occur during El Niño (1972, 1982, and 1997) and non–El Niño (1961, 1967, and 1994) years. In El Niño years, two off-equatorial, anticyclonic circulations develop, associated with the increased pressure over the eastern Indian Ocean. The anticyclonic circulation over the Northern Hemisphere enhances the easterly component of the winds in the northwestern Indian Ocean. This enhanced easterly component increases the mixed layer temperature by inducing an anomalous westward ocean current that advects the warm mean mixed layer from the central to the western Indian Ocean. Meanwhile, the anticyclonic circulation over the southeastern Indian Ocean strengthens southeasterlies, thereby causing oceanic meridional and vertical advection of the cold mean temperature. Consequently, the IODM in El Niño years is characterized by the warming in the northwestern and the cooling in the southeastern Indian Ocean. In non–El Niño years, a monsoonlike wind flow increases the westerly and southeasterly components of the wind over the northwestern and southeastern Indian Ocean, respectively. Oceanic currents induced by these winds result in anomalous cold advection in both of these regions. In addition, the monsoonlike wind flow over the southeastern Indian Ocean enhances the anomalous latent and sensible heat fluxes in non–El Niño years. Hence, the cooling of the eastern tropical Indian Ocean, rather than the warming of the western Indian Ocean, becomes the major feature of the IODM during non–El Niño years.

2019 ◽  
Author(s):  
Jong-Suk Kim ◽  
Phetlamphanh Xaiyaseng ◽  
Lihua Xiong ◽  
Sun-Kwon Yoon ◽  
Taesam Lee

Abstract. This study analyzed the sensitivity of rainfall patterns over the Indochina Peninsula (ICP) to sea surface temperature in the Indian Ocean based on statistical simulations of observational data. Quantitative changes in rainfall patterns over the ICP were examined for both wet and dry seasons to identify hotspots sensitive to ocean warming in the Indo-Pacific sector. Rainfall variability across the ICP was confirmed amplified by combined and/or independent effects of the El Niño–Southern Oscillation and the Indian Ocean Dipole (IOD). During the years of El Niño and a positive phase of the IOD, rainfall is less than usual in Thailand, Cambodia, southern Laos, and Vietnam. Conversely, during the years of La Niña and a negative phase of the IOD, rainfall throughout the ICP is above normal, except in parts of central Laos and northern Vietnam. This study also simulated the change of ICP rainfall in the wet and dry seasons according to intentional IOD changes, and IOD-sensitive hotspots were verified through quantitative analysis. The results of this study provide clear understanding both of the sensitivity of regional precipitation to the IOD and of the potential future impact of statistical changes regarding the IOD in terms of understanding regional impacts associated with precipitation in a changing climate.


2017 ◽  
Vol 30 (6) ◽  
pp. 2233-2249 ◽  
Author(s):  
Lei Fan ◽  
Qinyu Liu ◽  
Chunzai Wang ◽  
Feiyan Guo

Abstract This study identifies several modes of coevolution of various types of El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) by performing rotated season-reliant empirical orthogonal function (S-EOF) analysis with consideration of ENSO asymmetry. The first two modes reveal that early-onset ENSO is associated with subsequent strong IOD development, whereas late-onset ENSO forces an obscure IOD pattern with marginal SST anomalies in the western Indian Ocean. Further studies show that El Niño starting before early summer can more easily force an IOD event than that starting in late summer or fall, even when they are of equivalent magnitudes. This is because the atmospheric responses over the Indian Ocean to the eastern Pacific warming are in sharp contrast between early and late summer. Early-onset (late onset) El Niño can (cannot) cause favorable atmospheric circulation conditions over the Indian Ocean for inducing the western Indian Ocean warming, which facilitates the subsequent IOD development. In addition, the different propagations of ocean dynamic Rossby waves during the early- or late-onset types of ENSO are also accountable for the different IOD development. For the higher-order modes, the rotated S-EOF of “Niño only” cases shows a coevolution between a negative IOD mode and a date line Pacific El Niño, with warm sea surface temperature anomalies originating from the northern Pacific meridional mode.


2005 ◽  
Vol 18 (17) ◽  
pp. 3428-3449 ◽  
Author(s):  
Albert S. Fischer ◽  
Pascal Terray ◽  
Eric Guilyardi ◽  
Silvio Gualdi ◽  
Pascale Delecluse

Abstract The question of whether and how tropical Indian Ocean dipole or zonal mode (IOZM) interannual variability is independent of El Niño–Southern Oscillation (ENSO) variability in the Pacific is addressed in a comparison of twin 200-yr runs of a coupled climate model. The first is a reference simulation, and the second has ENSO-scale variability suppressed with a constraint on the tropical Pacific wind stress. The IOZM can exist in the model without ENSO, and the composite evolution of the main anomalies in the Indian Ocean in the two simulations is virtually identical. Its growth depends on a positive feedback between anomalous equatorial easterly winds, upwelling equatorial and coastal Kelvin waves reducing the thermocline depth and sea surface temperature off the coast of Sumatra, and the atmospheric dynamical response to the subsequently reduced convection. Two IOZM triggers in the boreal spring are found. The first is an anomalous Hadley circulation over the eastern tropical Indian Ocean and Maritime Continent, with an early northward penetration of the Southern Hemisphere southeasterly trades. This situation grows out of cooler sea surface temperatures in the southeastern tropical Indian Ocean left behind by a reinforcement of the late austral summer winds. The second trigger is a consequence of a zonal shift in the center of convection associated with a developing El Niño, a Walker cell anomaly. The first trigger is the only one present in the constrained simulation and is similar to the evolution of anomalies in 1994, when the IOZM occurred in the absence of a Pacific El Niño state. The presence of these two triggers—the first independent of ENSO and the second phase locking the IOZM to El Niño—allows an understanding of both the existence of IOZM events when Pacific conditions are neutral and the significant correlation between the IOZM and El Niño.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2013 ◽  
Vol 12 (2) ◽  
pp. 43 ◽  
Author(s):  
Akmad Fadholi

ABSTRAK El Nino dan Indian Ocean Dipole (IOD) merupakan fenomena global yang memberikan pengaruh terhadap curah hujan yang terjadi di wilayah Indonesia. Besar kecilnya pengaruh itu beragam dari satu tempat ke tempat yang lain. Di kota Pangkalpinang yang memiliki pola curah hujan monsoon, dilakukan studi tentang dampak El Nino dan IOD terhadap curah hujan yang terjadi. Dengan menggunakan metode korelasi didapatkan hasil bahwa nilai korelasi antara indeks Dipole Mode dengan anomali curah hujan lebih tinggi dibandingkan dengan indeks Nino 3.4. Kata kunci: El nino, IOD, Curah Hujan, Anomali


2006 ◽  
Vol 24 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Liu Na ◽  
Jia Zhen ◽  
Chen Hongxia ◽  
Hua Feng ◽  
Li Yunfang

2015 ◽  
Vol 21 (2) ◽  
pp. 75 ◽  
Author(s):  
Khairul Amri ◽  
Ali Suman ◽  
Hari Eko Irianto ◽  
Wudianto Wudianto

The effects of Indian Ocean Dipole Mode and El Niño–Southern Oscillation events on catches of YellowfinTuna (<em>Thunnus albacares</em>) in the Eastern Indian Ocean (EIO) off Java were evaluated through the use of remotely sensed environmental data (sea surface temperature/SST and chlorophyll-a concentration/SSC) and Yellowfin Tuna catch data. Analyses were conducted for the period of 2003–2012, which included the strong positive dipole mode event in association with weak El-Nino 2006.Yellowfin Tuna catch data were taken from Palabuhanratu landing place and remotely sensed environmental data were taken from MODIS-Aqua sensor.The result showed that regional climate anomaly Indian Ocean Dipole Mode influenced Yellowfin Tuna catch and its composition. The catches per unit effort (CPUE) of Thunnus alabacares in the strong positive dipole mode event in 2006 and weak El-Nino events in 2011 and 2012 was higher. The increase patern of CPUE followed the upwelling process, started from May-June achieved the peak between September-October.Very high increase in CPUE when strong positive dipole mode event (2006) and a weak El-Nino events (2011 and 2012) had a relation with the increase in the distribution of chlorophyll-a indicating an increase in the abundance of phytoplankton (primary productivity) due to upwelling. In contrast, yellowfin tuna CPUE is very low at the La-Nina event (2005), though as the dominant catch when compared to others.


MAUSAM ◽  
2021 ◽  
Vol 59 (2) ◽  
pp. 167-172
Author(s):  
INDU BALA ◽  
O. P. SINGH

Utilizing the Indian Ocean Dipole Mode (IODM) and Indian Summer Monsoon Rainfall (ISMR) data for the period 1960-2002 the relationships between the IODM and monsoon onset over Kerala and rainfall distribution over the country have been studied. It has been found that stronger/weaker western pole during April-May is associated with delayed/early monsoon onset over Kerala. Stronger eastern pole during March-April seems to be associated with enhanced seasonal (June-September) rainfall over peninsular India. The IODM index of July-August can provide good indications of summer monsoon activity over peninsular India during the withdrawal phase of the  monsoon, i.e., during September.


Sign in / Sign up

Export Citation Format

Share Document