scholarly journals A Three-Layer Alternating Spinning Circulation in the South China Sea

2016 ◽  
Vol 46 (8) ◽  
pp. 2309-2315 ◽  
Author(s):  
Jianping Gan ◽  
Zhiqiang Liu ◽  
Chiwing Rex Hui

AbstractUnderstanding of the three-dimensional circulation in the South China Sea (SCS) is crucial for determining the transports of water masses, energy, and biogeochemical substances in the regional and adjacent larger oceans. The circulation’s kinematic and dynamic natures, however, are largely unclear. Results from a three-dimensional numerical ocean circulation model and geostrophic currents, derived from hydrographic data, reveal the existence of a unique, three-layer, cyclonic–anticyclonic–cyclonic (CAC) circulation in the upper (<750 m), middle (750–1500 m), and deep (>1500 m) layers in the SCS with differing seasonality. An inflow–outflow–inflow structure in Luzon Strait largely induces the CAC circulation, which leads to vortex stretching in the SCS basin because of a lateral planetary vorticity flux in each of the respective layers. The formation of joint effects of baroclinicity and relief (JEBAR) is an intrinsic dynamic response to the CAC circulation. The JEBAR arises from the CAC flow–topography interaction in the SCS.

2019 ◽  
Vol 124 (12) ◽  
pp. 8949-8968 ◽  
Author(s):  
Zhigang Lai ◽  
Guangzhen Jin ◽  
Yongmao Huang ◽  
Haiyun Chen ◽  
Xiaodong Shang ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Duanxin Chen ◽  
Shiguo Wu ◽  
Xiujuan Wang ◽  
Fuliang Lv

Polygonal faults were identified from three-dimensional (3D) seismic data in the middle-late Miocene marine sequences of the South China Sea. Polygonal faults in the study area are normal faults with fault lengths ranging from 100 to 1500 m, fault spaces ranging from 40 to 800 m, and throws ranging from 10 to 40 m. Gas hydrate was inferred from the seismic polarity, the reflection strength, and the temperature-pressure equilibrium computation results. Gas hydrates located in the sediments above the polygonal faults layer. Polygonal faults can act as pathways for the migration of fluid flow, which can supply hydrocarbons for the formation of gas hydrates.


Sign in / Sign up

Export Citation Format

Share Document