scholarly journals Comments on “Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer”

2018 ◽  
Vol 48 (2) ◽  
pp. 455-458 ◽  
Author(s):  
Yign Noh ◽  
Yeonju Choi

AbstractUsing large-eddy simulations (LES) it is shown that the depth of a diurnal thermocline h should be scaled by the Zilitinkevich scale LZ, not by the Monin–Obukhov length scale LMO, contrary to the proposition by Pearson et al. Their argument to explain the slower increase of h than LMO using the effect of the preexisting thermocline is also invalid.

2018 ◽  
Vol 48 (2) ◽  
pp. 459-462
Author(s):  
Brodie C. Pearson ◽  
Alan L. M. Grant ◽  
Jeff A. Polton ◽  
Stephen E. Belcher

AbstractThe differences between the conclusions of Noh and Choi and of Pearson et al., which are largely a result of defining different length scales based on different quantities, are discussed. This study shows that the layer over which Langmuir turbulence mixes (nominally hTKE) under a stabilizing surface buoyancy flux should be scaled by a combination of the Langmuir stability length LL and initial/nocturnal boundary layer depth h0 rather than by the Zilitinkevich length.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Stephen E. Belcher ◽  
Alan L. M. Grant ◽  
Kirsty E. Hanley ◽  
Baylor Fox-Kemper ◽  
Luke Van Roekel ◽  
...  

2021 ◽  
Author(s):  
Gregory Wagner ◽  
Andre Souza ◽  
Adeline Hillier ◽  
Ali Ramadhan ◽  
Raffaele Ferrari

<p>Parameterizations of turbulent mixing in the ocean surface boundary layer (OSBL) are key Earth System Model (ESM) components that modulate the communication of heat and carbon between the atmosphere and ocean interior. OSBL turbulence parameterizations are formulated in terms of unknown free parameters estimated from observational or synthetic data. In this work we describe the development and use of a synthetic dataset called the “LESbrary” generated by a large number of idealized, high-fidelity, limited-area large eddy simulations (LES) of OSBL turbulent mixing. We describe how the LESbrary design leverages a detailed understanding of OSBL conditions derived from observations and large scale models to span the range of realistically diverse physical scenarios. The result is a diverse library of well-characterized “synthetic observations” that can be readily assimilated for the calibration of realistic OSBL parameterizations in isolation from other ESM model components. We apply LESbrary data to calibrate free parameters, develop prior estimates of parameter uncertainty, and evaluate model errors in two OSBL parameterizations for use in predictive ESMs.</p>


2017 ◽  
Vol 47 (12) ◽  
pp. 2863-2886 ◽  
Author(s):  
Qing Li ◽  
Baylor Fox-Kemper

AbstractLarge-eddy simulations (LESs) with various constant wind, wave, and surface destabilizing surface buoyancy flux forcing are conducted, with a focus on assessing the impact of Langmuir turbulence on the entrainment buoyancy flux at the base of the ocean surface boundary layer. An estimate of the entrainment buoyancy flux scaling is made to best fit the LES results. The presence of Stokes drift forcing and the resulting Langmuir turbulence enhances the entrainment rate significantly under weak surface destabilizing buoyancy flux conditions, that is, weakly convective turbulence. In contrast, Langmuir turbulence effects are moderate when convective turbulence is dominant and appear to be additive rather than multiplicative to the convection-induced mixing. The parameterized unresolved velocity scale in the K-profile parameterization (KPP) is modified to adhere to the new scaling law of the entrainment buoyancy flux and account for the effects of Langmuir turbulence. This modification is targeted on common situations in a climate model where either Langmuir turbulence or convection is important and may overestimate the entrainment when both are weak. Nevertheless, the modified KPP is tested in a global climate model and generally outperforms those tested in previous studies. Improvements in the simulated mixed layer depth are found, especially in the Southern Ocean in austral summer.


2009 ◽  
Vol 39 (5) ◽  
pp. 1077-1096 ◽  
Author(s):  
Gregory P. Gerbi ◽  
John H. Trowbridge ◽  
Eugene A. Terray ◽  
Albert J. Plueddemann ◽  
Tobias Kukulka

Abstract Observations of turbulent kinetic energy (TKE) dynamics in the ocean surface boundary layer are presented here and compared with results from previous observational, numerical, and analytic studies. As in previous studies, the dissipation rate of TKE is found to be higher in the wavy ocean surface boundary layer than it would be in a flow past a rigid boundary with similar stress and buoyancy forcing. Estimates of the terms in the turbulent kinetic energy equation indicate that, unlike in a flow past a rigid boundary, the dissipation rates cannot be balanced by local production terms, suggesting that the transport of TKE is important in the ocean surface boundary layer. A simple analytic model containing parameterizations of production, dissipation, and transport reproduces key features of the vertical profile of TKE, including enhancement near the surface. The effective turbulent diffusion coefficient for heat is larger than would be expected in a rigid-boundary boundary layer. This diffusion coefficient is predicted reasonably well by a model that contains the effects of shear production, buoyancy forcing, and transport of TKE (thought to be related to wave breaking). Neglect of buoyancy forcing or wave breaking in the parameterization results in poor predictions of turbulent diffusivity. Langmuir turbulence was detected concurrently with a fraction of the turbulence quantities reported here, but these times did not stand out as having significant differences from observations when Langmuir turbulence was not detected.


2015 ◽  
Vol 45 (8) ◽  
pp. 2006-2024 ◽  
Author(s):  
Gregory P. Gerbi ◽  
Samuel E. Kastner ◽  
Genevieve Brett

AbstractThe effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.


2018 ◽  
Vol 48 (9) ◽  
pp. 1921-1940 ◽  
Author(s):  
Dong Wang ◽  
Tobias Kukulka ◽  
Brandon G. Reichl ◽  
Tetsu Hara ◽  
Isaac Ginis ◽  
...  

AbstractBased on a large-eddy simulation approach, this study investigates the response of the ocean surface boundary layer (OSBL) and Langmuir turbulence (LT) to extreme wind and complex wave forcing under tropical cyclones (TCs). The Stokes drift vector that drives LT is determined from spectral wave simulations. During maximum TC winds, LT substantially enhances the entrainment of cool water, causing rapid OSBL deepening. This coincides with relatively strong wave forcing, weak inertial currents, and shallow OSBL depth , measured by smaller ratios of , where denotes a Stokes drift decay length scale. LT directly affects a near-surface layer whose depth is estimated from enhanced anisotropy ratios of velocity variances. During rapid OSBL deepening, is proportional to , and LT efficiently transports momentum in coherent structures, locally enhancing shear instabilities in a deeper shear-driven layer, which is controlled by LT. After the TC passes, inertial currents are stronger and is greater while is shallower and proportional to . During this time, the LT-affected surface layer is too shallow to directly influence the deeper shear-driven layer, so that both layers are weakly coupled. At the same time, LT reduces surface currents that play a key role in the surface energy input at a later stage. These two factors contribute to relatively small TKE levels and entrainment rates after TC passage. Therefore, our study illustrates that inertial currents need to be taken into account for a complete understanding of LT and its effects on OSBL dynamics in TC conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 207 ◽  
Author(s):  
Haili Wang ◽  
Changming Dong ◽  
Yongzeng Yang ◽  
Xiaoqian Gao

Turbulent motions in the thin ocean surface boundary layer control exchanges of momentum, heat and trace gases between the atmosphere and ocean. However, present parametric equations of turbulent motions that are applied to global climate models result in systematic or substantial errors in the ocean surface boundary layer. Significant mixing caused by surface wave processes is missed in most parametric equations. A Large Eddy Simulation model is applied to investigate the wave-induced mixed layer structure. In the wave-averaged equations, wave effects are calculated as Stokes forces and breaking waves. To examine the effects of wave parameters on mixing, a series of wave conditions with varying wavelengths and heights are used to drive the model, resulting in a variety of Langmuir turbulence and wave breaking outcomes. These experiments suggest that wave-induced mixing is more sensitive to wave heights than to the wavelength. A series of numerical experiments with different wind intensities-induced Stokes drifts are also conducted to investigate wave-induced mixing. As the wind speed increases, the influence depth of Langmuir circulation deepens. Additionally, it is observed that breaking waves could destroy Langmuir cells mainly at the sea surface, rather than at deeper layers.


Sign in / Sign up

Export Citation Format

Share Document