langmuir turbulence
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 26)

H-INDEX

37
(FIVE YEARS 3)

2021 ◽  
Vol 14 (7) ◽  
pp. 4261-4282
Author(s):  
Qing Li ◽  
Jorn Bruggeman ◽  
Hans Burchard ◽  
Knut Klingbeil ◽  
Lars Umlauf ◽  
...  

Abstract. The General Ocean Turbulence Model (GOTM) is a one-dimensional water column model, including a set of state-of-the-art turbulence closure models, and has widely been used in various applications in the ocean modeling community. Here, we extend GOTM to include a set of newly developed ocean surface vertical mixing parameterizations of Langmuir turbulence via coupling with the Community Vertical Mixing Project (CVMix). A Stokes drift module is also implemented in GOTM to provide the necessary ocean surface waves information to the Langmuir turbulence parameterizations, as well as to facilitate future development and evaluation of new Langmuir turbulence parameterizations. In addition, a streamlined workflow with Python and Jupyter notebooks is also described, enabled by the newly developed and more flexible configuration capability of GOTM. The newly implemented Langmuir turbulence parameterizations are evaluated against theoretical scalings and available observations in four test cases, including an idealized wind-driven entrainment case and three realistic cases at Ocean Station Papa, the northern North Sea, and the central Baltic Sea, and compared with the existing general length scale scheme in GOTM. The results are consistent with previous studies. This development extends the capability of GOTM towards including the effects of ocean surface waves and provides useful toolsets for the ocean modeling community to further study the effects of Langmuir turbulence in a broader scope.


Author(s):  
Hassanali Akbari ◽  
James W. LaBelle ◽  
David L. Newman

Theory and observations of Langmuir waves and turbulence induced in the auroral ionosphere by electron beams of magnetospheric-origin are reviewed. The theoretical discussions include a brief description of the electrostatic dispersion relation, excitation of Langmuir waves by electron beams, and the stability of beam distributions. The theory of Langmuir turbulence—including the parametric decay instability and wave collapse—is also briefly discussed. The main focus of the review, however, is on the observations of Langmuir waves and turbulence in the ionosphere by in-situ and ground-based sensors. A summary of five decades of in-situ wave and particle observations is presented and combined with a collection of more recent results from ground-based instruments. The ground-based observations include signatures of Langmuir turbulence in the form of coherent echoes in incoherent scatter radar measurements; signatures of electron beams in the form of auroral morphologies recorded by high-speed, high-resolution optical imagers; and electromagnetic emissions received on the ground at high latitudes. Uniting the various observations obtained by the vastly different sensors is shown to provide further insight into the micro-scale processes that occur in the ionosphere. Also discussed in this review is the potential of the ground-based sensors to provide a broader spatial and temporal context for single-point in-situ measurements of such processes.


Author(s):  
Tomas Chor ◽  
James C. McWilliams ◽  
Marcelo Chamecki

AbstractThe K-profile parameterization (KPP) is a common method to model turbulent fluxes in regional and global oceanic models. Many versions of KPP exist in the oceanic sciences community and one of their main differences is how they take the effects of nonbreaking waves into account. Although there is qualitative consensus that nonbreaking waves enhance vertical mixing due to the ensuing Langmuir circulations, there is no consensus on the quantitative aspects and modeling approach. In this paper we use a recently-developed method to estimate both components of KPP (the diffusive term, usually called local, and the nondiffusive component, usually called nonlocal) based on numerically-simulated turbulent fluxes without any a priori assumptions about their scaling or their shape. Through this method we show that the cubic shape usually used in KPP is not optimal for wavy situation and propose new ones. Furthermore we show that the formulation for the nondiffusive fluxes, which currently only depend on the presence of surface buoyancy fluxes, should also take wave effects into account. Finally, we investigate how the application of these changes to KPP improves the representation of turbulent fluxes in a diagnostic approach when compared to previous models.


2021 ◽  
Author(s):  
Qing Li ◽  
Jorn Bruggeman ◽  
Hans Burchard ◽  
Knut Klingbeil ◽  
Lars Umlauf ◽  
...  

Abstract. The General Ocean Turbulence Model (GOTM) is a one-dimensional water column model including a set of state-of-the-art turbulence closure models, and has widely been used in various applications in the ocean modeling community. Here we extend GOTM to include a set of newly developed ocean surface vertical mixing parameterizations of Langmuir turbulence via coupling with the Community Vertical Mixing Project (CVMix). A Stokes drift module is also implemented in GOTM to provide the necessary ocean surface waves information to the Langmuir turbulence parameterizations, as well as to facilitate future development and evaluation of new Langmuir turbulence parameterizations. In addition, a streamlined workflow with Python and Jupyter Notebook is also described, enabled by the newly developed and more flexible configuration capability of GOTM. The newly implemented Langmuir turbulence parameterizations are evaluated against theoretical scalings and available observations in four test cases, including an idealized wind-driven entrainment case and three realistic cases at ocean station Papa, the northern North Sea and the central Gotland Sea, and compared with the existing General Length Scale scheme in GOTM. The results are consistent with previous studies. This development extends the capability of GOTM towards including the effects of ocean surface waves and provides useful toolsets for the ocean modeling community to further study the effects of Langmuir turbulence in a broader scope.


2021 ◽  
Vol 6 (6) ◽  
pp. 5896-5908
Author(s):  
Mostafa M. A. Khater ◽  
◽  
A. El-Sayed Ahmed ◽  
◽  

Author(s):  
Zhihua Zheng ◽  
Ramsey R. Harcourt ◽  
Eric A. D’Asaro

AbstractMonin-Obukhov Similarity Theory (MOST) provides important scaling laws for flow properties in the surface layer of the atmosphere and has contributed to most of our understanding of the near-surface turbulence. The prediction of near-surface vertical mixing in most operational ocean models is largely built upon this theory. However, the validity of MOST in the upper ocean is questionable due to the demonstrated importance of surface waves in the region. Here we examine the validity of MOST in the statically unstable oceanic surface layer, using data collected from two open ocean sites with different wave conditions. The observed vertical temperature gradients are found to be about half of those predicted by MOST. We hypothesize this is attributable to either the breaking of surface waves, or Langmuir turbulence generated by the wave-current interaction. Existing turbulence closure models for surface wave breaking and for Langmuir turbulence are simplified to test these two hypotheses. Although both models predict reduced temperature gradients, the simplified Langmuir turbulence model matches observations more closely, when appropriately tuned.


Sign in / Sign up

Export Citation Format

Share Document