scholarly journals Diagnosing the Influence of Mesoscale Eddy Fluxes on the Deep Western Boundary Current in the 1/10° STORM/NCEP Simulation

2019 ◽  
Vol 49 (3) ◽  
pp. 751-764 ◽  
Author(s):  
Veit Lüschow ◽  
Jin-Song von Storch ◽  
Jochem Marotzke

AbstractUsing a 0.1° ocean model, this paper establishes a consistent picture of the interaction of mesoscale eddy density fluxes with the geostrophic deep western boundary current (DWBC) in the Atlantic between 26°N and 20°S. Above the DWBC core (the level of maximum southward flow, ~2000-m depth), the eddies flatten isopycnals and hence decrease the potential energy of the mean flow, which agrees with their interpretation and parameterization in the Gent–McWilliams framework. Below the core, even though the eddy fluxes have a weaker magnitude, they systematically steepen isopycnals and thus feed potential energy to the mean flow, which contradicts common expectations. These two vertically separated eddy regimes are found through an analysis of the eddy density flux divergence in stream-following coordinates. In addition, pathways of potential energy in terms of the Lorenz energy cycle reveal this regime shift. The twofold eddy effect on density is balanced by an overturning in the plane normal to the DWBC. Its direction is clockwise (with upwelling close to the shore and downwelling further offshore) north of the equator. In agreement with the sign change in the Coriolis parameter, the overturning changes direction to anticlockwise south of the equator. Within the domain covered in this study, except in a narrow band around the equator, this scenario is robust along the DWBC.

2020 ◽  
Vol 50 (9) ◽  
pp. 2735-2758
Author(s):  
Tiago Carrilho Biló ◽  
William E. Johns

AbstractThe mean North Atlantic Deep Water (NADW, 1000 < z < 5000 m) circulation and deep western boundary current (DWBC) variability offshore of Abaco, Bahamas, at 26.5°N are investigated from nearly two decades of velocity and hydrographic observations, and outputs from a 30-yr-long eddy-resolving global simulation. Observations at 26.5°N and Argo-derived geostrophic velocities show the presence of a mean Abaco Gyre spanning the NADW layer, consisting of a closed cyclonic circulation between approximately 24° and 30°N and 72° and 77°W. The southward-flowing portion of this gyre (the DWBC) is constrained to within ~150 km of the western boundary with a mean transport of ~30 Sv (1 Sv ≡ 106 m3 s−1). Offshore of the DWBC, the data show a consistent northward recirculation with net transports varying from 6.5 to 16 Sv. Current meter records spanning 2008–17 supported by the numerical simulation indicate that the DWBC transport variability is dominated by two distinct types of fluctuations: 1) periods of 250–280 days that occur regularly throughout the time series and 2) energetic oscillations with periods between 400 and 700 days that occur sporadically every 5–6 years and force the DWBC to meander far offshore for several months. The shorter-period variations are related to DWBC meandering caused by eddies propagating southward along the continental slope at 24°–30°N, while the longer-period oscillations appear to be related to large anticyclonic eddies that slowly propagate northwestward counter to the DWBC flow between ~20° and 26.5°N. Observational and theoretical evidence suggest that these two types of variability might be generated, respectively, by DWBC instability processes and Rossby waves reflecting from the western boundary.


2013 ◽  
Vol 43 (8) ◽  
pp. 1666-1690 ◽  
Author(s):  
Stephanie Waterman ◽  
Brian J. Hoskins

Abstract This manuscript revisits a study of eddy–mean flow interactions in an idealized model of a western boundary current extension jet using properties of the horizontal velocity correlation tensor to diagnose characteristics of average eddy shape, orientation, propagation, and mean flow feedback. These eddy characteristics are then used to provide a new description of the eddy–mean flow interactions observed in terms of different ingredients of the eddy motion. The diagnostics show patterns in average eddy shape, orientation, and propagation that are consistent with the signatures of jet instability in the upstream region and wave radiation in the downstream region. Together they give a feedback onto the mean flow that gives the downstream character of the jet and drives the jet's recirculation gyres. A breakdown of the eddy forcing into contributions from individual terms confirms the expected role of cross-jet gradients in meridional eddy tilt in stabilizing the jet to its barotropic instability; however, it also reveals important roles played by the along-jet evolution of eddy zonal–meridional elongation. It is the mean flow forcing derived from these patterns that acts to strengthen and extend the jet downstream and forces the time-mean recirculation gyres. This understanding of the dependence of mean flow forcing on eddy structural properties suggests that failure to adequately resolve eddy elongation could underlie the weakened jet strength, extent, and changed recirculation structure seen in this idealized model for reduced spatial resolutions. Further, it may suggest new ideas for the parameterization of this forcing.


2015 ◽  
Vol 45 (10) ◽  
pp. 2457-2469 ◽  
Author(s):  
Gordon E. Swaters

AbstractA comprehensive theoretical study of the nonlinear hemispheric-scale midlatitude and cross-equatorial steady-state dynamics of a grounded deep western boundary current is given. The domain considered is an idealized differentially rotating, meridionally aligned basin with zonally varying parabolic bottom topography so that the model ocean shallows on both the western and eastern sides of the basin. Away from the equator, the flow is governed by nonlinear planetary geostrophic dynamics on sloping topography in which the potential vorticity equation can be explicitly solved. As the flow enters the equatorial region, it speeds up and becomes increasingly nonlinear and passes through two distinguished inertial layers referred to as the “intermediate” and “inner” inertial equatorial boundary layers, respectively. The flow in the intermediate equatorial region is shown to accelerate and turn eastward, forming a narrow equatorial jet. The qualitative properties of the solution presented are consistent with the known dynamical characteristics of the deep western boundary currents as they flow from the midlatitudes into the tropics. The predominately zonal flow across the ocean basin in the inner equatorial region (and its exit from the equatorial region) is determined in Part II of this study.


2016 ◽  
Author(s):  
Christopher S. Meinen ◽  
Silvia L. Garzoli ◽  
Renellys C. Perez ◽  
Edmo Campos ◽  
Alberto R. Piola ◽  
...  

Abstract. The Deep Western Boundary Current (DWBC) at 34.5° S in the South Atlantic carries a significant fraction of the cold deep limb of the Meridional Overturning Circulation (MOC), and therefore its variability affects both the meridional heat transport and the regional and global climate. Nearly six years of observations from a line of pressure-equipped inverted echo sounders (PIES) have yielded an unprecedented data set for studying the characteristics of the time-varying DWBC volume transport at 34.5° S. Furthermore, the horizontal resolution of the observing array was greatly improved in December 2012 with the addition of two current-and-pressure-equipped inverted echo sounders (CPIES) at the midpoints of three of the existing sites. Regular hydrographic sections along the PIES/CPIES line confirm the presence of recently-ventilated North Atlantic Deep Water carried by the DWBC. The time-mean absolute geostrophic transport integrated within the DWBC layer, defined between 800–4800 dbar, and within longitude bounds of 51.5° W to 44.5° W is −15 Sv (1 Sv = 106 m3 s−1; negative indicates southward flow). The observed peak-to-peak range in volume transport using these integration limits is from −89 Sv to &amp;plus;50 Sv, and the temporal standard deviation is 23 Sv. Testing different vertical integration limits based on time-mean water-mass property levels yields small changes to these values, but no significant alteration to the character of the transport time series. The time-mean southward DWBC flow at this latitude is confined west of 49.5° W, with recirculations dominating the flow further offshore. As with other latitudes where the DWBC has been observed for multiple years, the time variability greatly exceeds the time-mean, suggesting the presence of strong coherent vortices and/or Rossby Wave-like signals propagating to the boundary from the interior.


Sign in / Sign up

Export Citation Format

Share Document