scholarly journals The North Atlantic Subpolar Gyre in Four High-Resolution Models

2005 ◽  
Vol 35 (5) ◽  
pp. 757-774 ◽  
Author(s):  
A. M. Treguier ◽  
S. Theetten ◽  
E. P. Chassignet ◽  
T. Penduff ◽  
R. Smith ◽  
...  

Abstract The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ⅙° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more].

2017 ◽  
Vol 50 (3-4) ◽  
pp. 921-937 ◽  
Author(s):  
Jon Robson ◽  
Irene Polo ◽  
Dan L. R. Hodson ◽  
David P. Stevens ◽  
Len C. Shaffrey

2019 ◽  
Author(s):  
Mathieu Le Corre ◽  
Jonathan Gula ◽  
Anne-Marie Tréguier

Abstract. The circulation in the North Atlantic Subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics is traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first order balance between the planetary vorticity advection, the bottom pressure torque and the wind stress curl. However, this dynamics has been studied mostly with non-eddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic Subpolar gyre using a high resolution simulation (≈ 2-km) with topography-following vertical coordinates to better represent the mesoscale turbulence and flow-topography interactions. Our findings highlight that, locally, there is a first order balance between the bottom pressure torque and the nonlinear terms, albeit with a high degree of cancellation between each other. However, balances integrated over different regions of the gyre – shelf, slope and interior – still highlight the important role played by nonlinearities and the bottom drag curls. In particular the topographic Sverdrup balance cannot describe the dynamics in the interior of the gyre. The main sources of cyclonic vorticity are the nonlinear terms due to eddies generated along eastern boundary currents and the time-mean nonlinear terms from the Northwest Corner. Our results suggest that a good representation of the mesoscale activity along with a good positioning of the Northwest corner are two important conditions for a better representation of the circulation in the North Atlantic Subpolar Gyre.


2014 ◽  
Vol 11 (6) ◽  
pp. 1683-1692 ◽  
Author(s):  
V. Racapé ◽  
N. Metzl ◽  
C. Pierre ◽  
G. Reverdin ◽  
P. D. Quay ◽  
...  

Abstract. This study introduces for the first time the δ13CDIC seasonality in the North Atlantic subpolar gyre (NASPG) using δ13CDIC data obtained in 2005–2006 and 2010–2012 with dissolved inorganic carbon (DIC) and nutrient observations. On the seasonal scale, the NASPG is characterized by higher δ13CDIC values during summer than during winter, with a seasonal amplitude between 0.70 ± 0.10‰ (August 2010–March 2011) and 0.77 ± 0.07‰ (2005–2006). This is mainly attributed to photosynthetic activity in summer and to a deep remineralization process during winter convection, sometimes influenced by ocean dynamics and carbonate pumps. There is also a strong and negative linear relationship between δ13CDIC and DIC during all seasons. Winter data also showed a large decrease in δ13CDIC associated with an increase in DIC between 2006 and 2011–2012, but the observed time rates (−0.04‰ yr−1and +1.7 μmol kg−1 yr−1) are much larger than the expected anthropogenic signal.


2020 ◽  
Vol 17 (9) ◽  
pp. 2553-2577
Author(s):  
Coraline Leseurre ◽  
Claire Lo Monaco ◽  
Gilles Reverdin ◽  
Nicolas Metzl ◽  
Jonathan Fin ◽  
...  

Abstract. The North Atlantic is one of the major ocean sinks for natural and anthropogenic atmospheric CO2. Given the variability of the circulation, convective processes or warming–cooling recognized in the high latitudes in this region, a better understanding of the CO2 sink temporal variability and associated acidification needs a close inspection of seasonal, interannual to multidecadal observations. In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar Gyre (50–64∘ N) using repeated observations collected over the last 3 decades in the framework of the long-term monitoring program SURATLANT (SURveillance de l'ATLANTique). Over the full period (1993–2017) pH decreases (−0.0017 yr−1) and fugacity of CO2 (fCO2) increases (+1.70 µatm yr−1). The trend of fCO2 in surface water is slightly less than the atmospheric rate (+1.96 µatm yr−1). This is mainly due to dissolved inorganic carbon (DIC) increase associated with the anthropogenic signal. However, over shorter periods (4–10 years) and depending on the season, we detect significant variability investigated in more detail in this study. Data obtained between 1993 and 1997 suggest a rapid increase in fCO2 in summer (up to +14 µatm yr−1) that was driven by a significant warming and an increase in DIC for a short period. Similar fCO2 trends are observed between 2001 and 2007 during both summer and winter, but, without significant warming detected, these trends are mainly explained by an increase in DIC and a decrease in alkalinity. This also leads to a pH decrease but with contrasting trends depending on the region and season (between −0.006 and −0.013 yr−1). Conversely, data obtained during the last decade (2008–2017) in summer show a cooling of surface waters and an increase in alkalinity, leading to a strong decrease in surface fCO2 (between −4.4 and −2.3 µatm yr−1; i.e., the ocean CO2 sink increases). Surprisingly, during summer, pH increases up to +0.0052 yr−1 in the southern subpolar gyre. Overall, our results show that, in addition to the accumulation of anthropogenic CO2, the temporal changes in the uptake of CO2 and ocean acidification in the North Atlantic Subpolar Gyre present significant multiannual variability, not clearly directly associated with the North Atlantic Oscillation (NAO). With such variability it is uncertain to predict the near-future evolution of air–sea CO2 fluxes and pH in this region. Thus, it is highly recommended to maintain long-term observations to monitor these properties in the next decade.


2015 ◽  
Vol 46 (11-12) ◽  
pp. 4027-4045 ◽  
Author(s):  
Jeremy P. Grist ◽  
Simon A. Josey ◽  
Zoe L. Jacobs ◽  
Robert Marsh ◽  
Bablu Sinha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document