scholarly journals Statistics of Nonlinear Internal Waves during the Shallow Water 2006 Experiment

2016 ◽  
Vol 33 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Mohsen Badiey ◽  
Lin Wan ◽  
James F. Lynch

AbstractDuring the Shallow Water Acoustic Experiment 2006 (SW06) conducted on the New Jersey continental shelf in the summer of 2006, detailed measurements of the ocean environment were made along a fixed reference track that was parallel to the continental shelf. The time-varying environment induced by nonlinear internal waves (NLIWs) was recorded by an array of moored thermistor chains and by X-band radars from the attending research vessels. Using a mapping technique, the three-dimensional (3D) temperature field for over a month of NLIW events is reconstructed and analyzed to provide a statistical summary of important NLIW parameters, such as the NLIW propagation speed, direction, and amplitude. The results in this paper can be used as a database for studying the NLIW generation, propagation, and fidelity of nonlinear internal wave models.

2010 ◽  
Vol 17 (4) ◽  
pp. 345-360 ◽  
Author(s):  
E. L. Shroyer ◽  
J. N. Moum ◽  
J. D. Nash

Abstract. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.


2005 ◽  
Vol 118 (2) ◽  
pp. 723-734 ◽  
Author(s):  
Scott D. Frank ◽  
Mohsen Badiey ◽  
James F. Lynch ◽  
William L. Siegmann

2008 ◽  
Vol 123 (5) ◽  
pp. 3589-3589
Author(s):  
Andrey N. Serebryany ◽  
Arthur Newhall ◽  
James F. Lynch

2019 ◽  
Vol 124 (12) ◽  
pp. 8949-8968 ◽  
Author(s):  
Zhigang Lai ◽  
Guangzhen Jin ◽  
Yongmao Huang ◽  
Haiyun Chen ◽  
Xiaodong Shang ◽  
...  

2020 ◽  
Author(s):  
Seung-Woo Lee ◽  
SungHyun Nam

<p>Oceanic nonlinear internal waves (NLIWs) play an important role in regional circulation, biogeochemistry, energetics, vertical mixing, and underwater acoustics, causing hazards to marine engineering and submarine navigation. Mainly generated by the interaction of the barotropic tides with the bottom topography, they propagate and transform due to wave-wave interaction process. Here, we present characteristics of first two modes of NLIWs observed using high-resolution spatiotemporal data collected in a relatively flat area in the northeastern East China Sea in May 2015. Six groups of NLIWs were identified from the observations: four groups of mode-1 and two groups of mode-2. The amplitude, propagation speed, and characteristic width of mode-1 NLIWs had ranges of 4–16 m, 0.53–0.56 m s<sup>-1</sup>, and 310–610 m, respectively. The mode-2 NLIWs propagate eastward slowly with a speed less than 0.37 m s<sup>-1</sup> with a comparable amplitude of 4–14 m and longer characteristic width of 540–1920 m. Intermodal interactions may take a role in the evolution of mode-1 NLIWs west of the observational area. Our results characterizing the two modes of NLIWs highlight the significance of propagation and transformation of NLIWs and their modal interactions on a broad and shallow shelf.</p>


1985 ◽  
Vol 90 (C4) ◽  
pp. 7256 ◽  
Author(s):  
Thomas L. Howell ◽  
Wendell S. Brown

2018 ◽  
Vol 123 (4) ◽  
pp. 2381-2400 ◽  
Author(s):  
Madeleine M. Hamann ◽  
Matthew H. Alford ◽  
John B. Mickett

Sign in / Sign up

Export Citation Format

Share Document