scholarly journals Limb Correction of Geostationary Infrared Imagery in Clear and Cloudy Regions to Improve Interpretation of RGB Composites for Real-Time Applications

2019 ◽  
Vol 36 (8) ◽  
pp. 1675-1690
Author(s):  
Nicholas J. Elmer ◽  
Emily Berndt ◽  
Gary Jedlovec ◽  
Kevin Fuell

AbstractRed–green–blue (RGB) composites are increasingly used by operational forecasters to interpret vast amounts of satellite imagery by reducing several bands into a single, easily understood product which identifies important atmospheric features with unique colors. Limb effects, a result of an increase in optical pathlength of the absorbing atmosphere between the satellite and Earth as viewing zenith angle increases, adversely affects RGB composite interpretation by causing anomalous reductions in brightness temperature, thus changing the color interpretation of the RGB composites. In a previous paper, Elmer et al. demonstrated a limb correction technique that effectively removes limb effects from polar-orbiting infrared channels in both clear and cloudy regions using latitudinally and seasonally varying correction coefficients. This study applies the Elmer et al. limb correction to Air Mass RGB composites derived from geostationary sensors and compares the limb-corrected geostationary imagery to limb-corrected polar-orbiter imagery and satellite-derived atmospheric profiles. A statistical comparison in overlapping regions shows that the limb correction reduces the absolute mean brightness temperature difference from 4–12 K to 0–2 K for all infrared bands, demonstrating that the Elmer et al. limb correction algorithm is a robust method of removing limb effects from infrared imagery derived from both geostationary and polar-orbiting sensors. The limb-corrected RGB composites derived from geostationary sensors present several advantages, including the improved depiction of atmospheric features and enabling wider use of imagery from overlapping geostationary coverage regions where viewing zenith angles are large for both geostationary sensors.

1989 ◽  
Author(s):  
Insup Lee ◽  
Susan Davidson ◽  
Victor Wolfe

Author(s):  
Mohsen Ansari ◽  
Amir Yeganeh-Khaksar ◽  
Sepideh Safari ◽  
Alireza Ejlali

Author(s):  
R.K. Clark ◽  
I.B. Greenberg ◽  
P.K. Boucher ◽  
T.F. Lunt ◽  
P.G. Neumann ◽  
...  

Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


1989 ◽  
Vol 32 (7) ◽  
pp. 862-871 ◽  
Author(s):  
Clement Yu ◽  
Wei Sun ◽  
Dina Bitton ◽  
Qi Yang ◽  
Richard Bruno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document