scholarly journals Simulation of a North American Monsoon Gulf Surge Event and Comparison to Observations

2012 ◽  
Vol 140 (8) ◽  
pp. 2534-2554 ◽  
Author(s):  
Andrew J. Newman ◽  
Richard H. Johnson

Abstract Gulf surges are transient disturbances that propagate along the Gulf of California (GoC) from south to north, transporting cool moist air toward the deserts of northwest Mexico and the southwest United States during the North American monsoon. They have been shown to modulate precipitation and have been linked to severe weather and flooding in northern Mexico and the southwest United States. The general features and progression of surge events are well studied, but their detailed evolution is still unclear. To address this, several convection-permitting simulations are performed over the core monsoon region for the 12–14 July 2004 gulf surge event. This surge event occurred during the North American Monsoon Experiment, which allows for extensive comparison to field observations. A 60-h reference simulation is able to reproduce the surge event, capturing its main characteristics: speed and direction of motion, thermodynamic changes during its passage, and strong northward moisture flux. While the timing of the simulated surge is accurate to within 1–3 h, it is weaker and shallower than observed. This deficiency is likely due to a combination of weaker convection and lack of stratiform precipitation along the western slopes of the Sierra Madre Occidental than observed, hence, weaker precipitation evaporation to aid the surge. Sensitivity simulations show that convective outflow does modulate the intensity of the simulated surge, in agreement with past studies. The removal of gap flows from the Pacific Ocean across the Baja Peninsula into the GoC shows they also impact surge intensity.

2013 ◽  
Vol 141 (9) ◽  
pp. 3238-3253 ◽  
Author(s):  
Andrew J. Newman ◽  
Richard H. Johnson

Abstract Gulf surges are transient disturbances that propagate along the Gulf of California (GoC) from south to north, transporting cool moist air toward the deserts of northwest Mexico and the southwest United States during the North American monsoon. They have been shown to modulate precipitation and have been linked to severe weather and flooding in northern Mexico and the southwest United States. The general features and progression of surge events are well documented but their detailed dynamical evolution is still unclear. In this study, a convection-permitting simulation is performed over the core monsoon region for the 12–14 July 2004 gulf surge event and the dynamics of the simulated surge are examined. Initially, convection associated with the tropical easterly wave precursor to Tropical Cyclone Blas creates a disturbance in the southern GoC on early 12 July. This disturbance is a precursor to the gulf surge on 13 July and is a Kelvin shock (internal bore under the influence of rotation) that dissipates in the central GoC. The surge initiates from inflow from the mouth of the GoC along with convective outflow impinging on the southern GoC. Continued convective outflow along the GoC generates multiple gravity currents and internal bores while intensifying the simulated surge as it propagates up the GoC. As the core of the surge reaches the northern GoC, a Kelvin shock is again the best dynamical fit to the phenomenon. Substantial low-level cooling and moistening are associated with the modeled surge along the northern GoC as is observed.


2007 ◽  
Vol 20 (7) ◽  
pp. 1219-1238 ◽  
Author(s):  
Jennifer L. Adams ◽  
David J. Stensrud

Abstract The North American monsoon (NAM) is a prominent summertime feature over northwestern Mexico and the southwestern United States. It is characterized by a distinct shift in midlevel winds from westerly to easterly as well as a sharp, marked increase in rainfall. This maximum in rainfall accounts for 60%–80% of the annual precipitation in northwestern Mexico and nearly 40% of the yearly rainfall over the southwestern United States. Gulf surges, or coastally trapped disturbances that occur over the Gulf of California, are important mechanisms in supplying the necessary moisture for the monsoon and are hypothesized in previous studies to be initiated by the passage of a tropical easterly wave (TEW). Since the actual number of TEWs varies from year to year, it is possible that TEWs are responsible for producing some of the interannual variability in the moisture flux and rainfall seen in the NAM. To explore the impact of TEWs on the NAM, four 1-month periods are chosen for study that represent a reasonable variability in TEW activity. Two continuous month-long simulations are produced for each of the selected months using the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model. One simulation is a control run that uses the complete boundary condition data, whereas a harmonic analysis is used to remove TEWs with periods of approximately 3.5 to 7.5 days from the model boundary conditions in the second simulation. These simulations with and without TEWs in the boundary conditions are compared to determine the impact of the waves on the NAM. Fields such as meridional moisture flux, rainfall totals, and surge occurrences are examined to define similarities and differences between the model runs. Results suggest that the removal of TEWs not only reduces the strength of gulf surges, but also rearranges rainfall over the monsoon region. Results further suggest that TEWs influence rainfall over the Southern Plains of the United States, with TEWs leading to less rainfall in this region. While these results are only suggestive, since rainfall is the most difficult model forecast parameter, it may be that TEWs alone can explain part of the inverse relationship between NAM and Southern Plains rainfall.


2007 ◽  
Vol 20 (9) ◽  
pp. 1628-1648 ◽  
Author(s):  
Richard H. Johnson ◽  
Paul E. Ciesielski ◽  
Brian D. McNoldy ◽  
Peter J. Rogers ◽  
Richard K. Taft

Abstract The 2004 North American Monsoon Experiment (NAME) provided an unprecedented observing network for studying the structure and evolution of the North American monsoon. This paper focuses on multiscale characteristics of the flow during NAME from the large scale to the mesoscale using atmospheric sounding data from the enhanced observing network. The onset of the 2004 summer monsoon over the NAME region accompanied the typical northward shift of the upper-level anticyclone or monsoon high over northern Mexico into the southwestern United States, but in 2004 this shift occurred slightly later than normal and the monsoon high did not extend as far north as usual. Consequently, precipitation over the southwestern United States was slightly below normal, although increased troughiness over the Great Plains contributed to increased rainfall over eastern New Mexico and western Texas. The first major pulse of moisture into the Southwest occurred around 13 July in association with a strong Gulf of California surge. This surge was linked to the westward passages of Tropical Storm Blas to the south and an upper-level inverted trough over northern Texas. The development of Blas appeared to be favored as an easterly wave moved into the eastern Pacific during the active phase of a Madden–Julian oscillation. On the regional scale, sounding data reveal a prominent sea breeze along the east shore of the Gulf of California, with a deep return flow as a consequence of the elevated Sierra Madre Occidental (SMO) immediately to the east. Subsidence produced a dry layer over the gulf, whereas a deep moist layer existed over the west slopes of the SMO. A prominent nocturnal low-level jet was present on most days over the northern gulf. The diurnal cycle of heating and moistening (Q1 and Q2) over the SMO was characterized by deep convective profiles in the mid- to upper troposphere at 1800 LT, followed by stratiform-like profiles at midnight, consistent with the observed diurnal evolution of precipitation over this coastal mountainous region. The analyses in the core NAME domain are based on a gridded dataset derived from atmospheric soundings only and, therefore, should prove useful in validating reanalyses and regional models.


2018 ◽  
Vol 39 (3) ◽  
pp. 1539-1554 ◽  
Author(s):  
Nicholas J. Nauslar ◽  
Benjamin J. Hatchett ◽  
Timothy J. Brown ◽  
Michael L. Kaplan ◽  
John F. Mejia

2008 ◽  
Vol 21 (4) ◽  
pp. 771-787 ◽  
Author(s):  
Emily J. Becker ◽  
Ernesto Hugo Berbery

Abstract The structure of the diurnal cycle of warm-season precipitation and its associated fields during the North American monsoon are examined for the core monsoon region and for the southwestern United States, using a diverse set of observations, analyses, and forecasts from the North American Monsoon Experiment field campaign of 2004. Included are rain gauge and satellite estimates of precipitation, Eta Model forecasts, and the North American Regional Reanalysis (NARR). Daily rain rates are of about the same magnitude in all datasets with the exception of the Climate Prediction Center (CPC) Morphing (CMORPH) technique, which exhibits markedly higher precipitation values. The diurnal cycle of precipitation within the core region occurs earlier in the day at higher topographic elevations, evolving with a westward shift of the maximum. This shift appears in the observations, reanalysis, and, while less pronounced, in the model forecasts. Examination of some of the fields associated with this cycle, including convective available potential energy (CAPE), convective inhibition (CIN), and moisture flux convergence (MFC), reveals that the westward shift appears in all of them, but more prominently in the latter. In general, warm-season precipitation in southern Arizona and parts of New Mexico shows a strong effect due to northward moisture surges from the Gulf of California. A reported positive bias in the NARR northward winds over the Gulf of California limits their use with confidence for studies of the moist surges along the Gulf; thus, the analysis is complemented with operational analysis and the Eta Model short-term simulations. The nonsurge diurnal cycle of precipitation lags the CAPE maximum by 6 h and is simultaneous with a minimum of CIN, while the moisture flux remains divergent throughout the day. During surges, CAPE and CIN have modifications only to the amplitude of their cycles, but the moisture flux becomes strongly convergent about 6 h before the precipitation maximum, suggesting a stronger role in the development of precipitation.


2007 ◽  
Vol 20 (9) ◽  
pp. 1923-1935 ◽  
Author(s):  
Katrina Grantz ◽  
Balaji Rajagopalan ◽  
Martyn Clark ◽  
Edith Zagona

Abstract Analysis is performed on the spatiotemporal attributes of North American monsoon system (NAMS) rainfall in the southwestern United States. Trends in the timing and amount of monsoon rainfall for the period 1948–2004 are examined. The timing of the monsoon cycle is tracked by identifying the Julian day when the 10th, 25th, 50th, 75th, and 90th percentiles of the seasonal rainfall total have accumulated. Trends are assessed using the robust Spearman rank correlation analysis and the Kendall–Theil slope estimator. Principal component analysis is used to extract the dominant spatial patterns and these are correlated with antecedent land–ocean–atmosphere variables. Results show a significant delay in the beginning, peak, and closing stages of the monsoon in recent decades. The results also show a decrease in rainfall during July and a corresponding increase in rainfall during August and September. Relating these attributes of the summer rainfall to antecedent winter–spring land and ocean conditions leads to the proposal of the following hypothesis: warmer tropical Pacific sea surface temperatures (SSTs) and cooler northern Pacific SSTs in the antecedent winter–spring leads to wetter than normal conditions over the desert Southwest (and drier than normal conditions over the Pacific Northwest). This enhanced antecedent wetness delays the seasonal heating of the North American continent that is necessary to establish the monsoonal land–ocean temperature gradient. The delay in seasonal warming in turn delays the monsoon initiation, thus reducing rainfall during the typical early monsoon period (July) and increasing rainfall during the later months of the monsoon season (August and September). While the rainfall during the early monsoon appears to be most modulated by antecedent winter–spring Pacific SST patterns, the rainfall in the later part of the monsoon seems to be driven largely by the near-term SST conditions surrounding the monsoon region along the coast of California and the Gulf of California. The role of antecedent land and ocean conditions in modulating the following summer monsoon appears to be quite significant. This enhances the prospects for long-lead forecasts of monsoon rainfall over the southwestern United States, which could have significant implications for water resources planning and management in this water-scarce region.


2006 ◽  
Vol 19 (3) ◽  
pp. 333-343 ◽  
Author(s):  
David J. Lorenz ◽  
Dennis L. Hartmann

Abstract The effect of the Madden–Julian oscillation (MJO) in the eastern Pacific on the North American monsoon is documented using NCEP–NCAR reanalysis and daily mean precipitation data from 1958 to 2003. It is found that positive zonal wind anomalies in the eastern tropical Pacific lead to above-normal precipitation in northwest Mexico and Arizona from several days to over a week later. This connection between the tropical Pacific and monsoon precipitation appears to be limited to regions influenced by moisture surges from the Gulf of California as a similar connection does not exist for New Mexico precipitation. The evidence suggests that the MJO might affect monsoon precipitation by modulating the strength of low-level easterly waves off the coast of Mexico, which in turn triggers the development of a gulf surge.


2010 ◽  
Vol 138 (9) ◽  
pp. 3498-3513 ◽  
Author(s):  
John F. Mejia ◽  
Michael W. Douglas ◽  
Peter J. Lamb

Abstract This paper describes aspects of a strong moisture surge over the Gulf of California that was observed during the 2004 North American Monsoon Experiment. Although a variety of special observation platforms aid the analyses, the authors focus on observations collected during two NOAA research aircraft flights made on 12 and 13 July. These flights sampled the initial and mature phases of a strong surge associated with Tropical Storm Blas. The first flight is identified by both a convective outflow and another feature, both deeper and with larger spatial scale, ahead of the outflow in association with the surge’s leading edge. The surge speed, ~18 m s−1, was identified from anomaly analysis of surface station pressure data. Observations show interesting multiscale features associated with the surge during its initial stages but do not allow for unambiguous identification of the surge’s forcing mechanism or dynamical properties. Data from the second flight were used to describe the along- and cross-gulf structure of the enhanced low-level flow associated with the surge event. The strongest winds were over the northernmost gulf, with weaker winds over the surrounding coastal areas. The kinematic moisture flux increased toward the northern gulf; wind speed is the main control on the flux as the moist layer shows only small horizontal gradients. Over the northern gulf, the combination of a very shallow moist layer and a shallow low-level jet yield maximum moisture fluxes near 950 hPa that are almost an order of magnitude larger than those at 850 hPa.


Sign in / Sign up

Export Citation Format

Share Document