moist layer
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 42 (3) ◽  
pp. 249-256
Author(s):  
C.P. JACOVIDES

The stability characteristics of internal gravity waves, generated by an isothermal bounded tangent velocity profile in the presence of a saturated finite layer, are studied. The moist layer with constant thickness the structure of the ness is introduced at different levels in respect to the point of inflection and the variations of moisture content and distance from the origin are examined. The characteristics of the unstable waves are obtained by solving numerically the linearized versions or the full equations of motion, in the inviscid and Boussinesq limit, through the technique of Lalas and Elnaudi (1976).  It is shown that the presence of the moist layer can significantly affect the stability characteristics of the waves. Increases in the moisture and distance of the layer from the Inflection point are found to amplify or decay the wave response, because the saturated layer behaves as a solid boundary to the flow. The presence of such effective layer is shown to stabilize short wavelengths and destabilize. Finally, an application of the model's results to the real atmosphere is discussed.


2019 ◽  
Vol 147 (7) ◽  
pp. 2451-2466 ◽  
Author(s):  
Hiroki Tsuji ◽  
Yukari N. Takayabu

Abstract A significant enhancement of precipitation can result from the interplay between two independent, large-scale phenomena: an atmospheric river (AR) and a cutoff low. An AR is a long, narrow region with a deep moist layer. A cutoff low is an upper-level cyclonic eddy isolated from the meandering upper-level westerly jet. Herein, we construct composites of cutoff lows both close to an AR (AR-close category) and distant from an AR (AR-distant category) over a 14-yr period across the western North Pacific region. A comparison between the two categories shows an enhanced precipitation area to the northwest of the cutoff low and to the south of the AR axis in the AR-close category. The horizontal formation among the AR, cutoff low, and enhanced precipitation area in the composite coincides with that in a disastrous flood event that occurred in Hiroshima, Japan, in 2014. The deep moist layer associated with the AR, and the destabilization and isentropic up-gliding effect associated with the cutoff low are also observed in both the composite and the Hiroshima cases. We further evaluate the distribution of quasigeostrophic forcing (Q vector) for vertical motion. This shows that warm air advection associated with the AR overcomes the descending forcing inherent in the northwest of the cutoff low and makes the instability and up-gliding effect in that region more effective. These results indicate that the interplay between ARs and cutoff lows is a common mechanism in the enhancement of precipitation and the Hiroshima case is an extreme precipitation event caused by this interplay.


2010 ◽  
Vol 138 (9) ◽  
pp. 3498-3513 ◽  
Author(s):  
John F. Mejia ◽  
Michael W. Douglas ◽  
Peter J. Lamb

Abstract This paper describes aspects of a strong moisture surge over the Gulf of California that was observed during the 2004 North American Monsoon Experiment. Although a variety of special observation platforms aid the analyses, the authors focus on observations collected during two NOAA research aircraft flights made on 12 and 13 July. These flights sampled the initial and mature phases of a strong surge associated with Tropical Storm Blas. The first flight is identified by both a convective outflow and another feature, both deeper and with larger spatial scale, ahead of the outflow in association with the surge’s leading edge. The surge speed, ~18 m s−1, was identified from anomaly analysis of surface station pressure data. Observations show interesting multiscale features associated with the surge during its initial stages but do not allow for unambiguous identification of the surge’s forcing mechanism or dynamical properties. Data from the second flight were used to describe the along- and cross-gulf structure of the enhanced low-level flow associated with the surge event. The strongest winds were over the northernmost gulf, with weaker winds over the surrounding coastal areas. The kinematic moisture flux increased toward the northern gulf; wind speed is the main control on the flux as the moist layer shows only small horizontal gradients. Over the northern gulf, the combination of a very shallow moist layer and a shallow low-level jet yield maximum moisture fluxes near 950 hPa that are almost an order of magnitude larger than those at 850 hPa.


2009 ◽  
Vol 137 (11) ◽  
pp. 3888-3906 ◽  
Author(s):  
Qingfang Jiang ◽  
James D. Doyle

Abstract The impact of moist processes on mountain waves over Sierra Nevada Mountain Range is investigated in this study. Aircraft measurements over Owens Valley obtained during the Terrain-induced Rotor Experiment (T-REX) indicate that mountain waves were generally weaker when the relative humidity maximum near the mountaintop level was above 70%. Four moist cases with a RH maximum near the mountaintop level greater than 90% have been further examined using a mesoscale model and a linear wave model. Two competing mechanisms governing the influence of moisture on mountain waves have been identified. The first mechanism involves low-level moisture that enhances flow–terrain interaction by reducing windward flow blocking. In the second mechanism, the moist airflow tends to damp mountain waves through destratifying the airflow and reducing the buoyancy frequency. The second mechanism dominates in the presence of a deep moist layer in the lower to middle troposphere, and the wave amplitude is significantly reduced associated with a smaller moist buoyancy frequency. With a shallow moist layer and strong low-level flow, the two mechanisms can become comparable in magnitude and largely offset each other.


2008 ◽  
Vol 136 (7) ◽  
pp. 2389-2407 ◽  
Author(s):  
Shingo Shimizu ◽  
Hiroshi Uyeda ◽  
Qoosaku Moteki ◽  
Takeshi Maesaka ◽  
Yoshimasa Takaya ◽  
...  

Abstract The structure and formation mechanism of a supercell-like storm in a moist environment below a melting layer were investigated using dual-Doppler radar analysis and a cloud-resolving storm simulator (CReSS). The supercell-like storm developed over the Kanto Plain, Japan, on 24 May 2000. The environment of the supercell-like storm possessed large convective available potential energy (1000 J kg−1), strong vertical wind shear (4.2 × 10−3 s−1 between the surface and 5 km above sea level), and a moist layer (the relative humidity was 60%–90% below a melting layer at 3 km in height). The dual-Doppler radar analysis with a variational method revealed that the supercell-like storm had similar structures to those of a typical supercell in a dry environment below a melting layer, such as that in the Great Plains in the United States. The structures included a hook echo, an overhanging echo structure, and a strong updraft with strong vertical vorticity. However, some of the characteristics of the supercell-like storm differed from those of a typical supercell. For example, a weak downdraft, a weak outflow, a weak inflow, and a short time maintenance of a single cyclonically rotating updraft (about 30 min) were noted. Dual-Doppler radar analysis revealed that the convergence between the weak outflow and the weak inflow kept its location just under the updraft for about 30 min; in other words, the strength of the outflow balanced the strength of the inflow. The observed features were simulated well using CReSS, and the thermodynamical features of the formation mechanism were revealed. The weak downdraft with a small evaporative cooling rate was simulated in a moist layer below the melting layer at 3 km in height. The small evaporation cooling was a major cause of the weak downdraft and the weak outflow. Because the outflow was weak and did not cut off the initial updraft, the weak inflow was able to keep supplying warm air to the initial updraft for about 30 min. Therefore, the present supercell-like storm could form as a result of the balance of the strengths of the weak inflow and the weak outflow in a moist environment.


2007 ◽  
Vol 20 (9) ◽  
pp. 1649-1661 ◽  
Author(s):  
Paquita Zuidema ◽  
Chris Fairall ◽  
Leslie M. Hartten ◽  
Jeffrey E. Hare ◽  
Daniel Wolfe

Abstract Surface flux, wind profiler, oceanic temperature and salinity, and atmospheric moisture, cloud, and wind observations gathered from the R/V Altair during the North American Monsoon Experiment (NAME) are presented. The vessel was positioned at the mouth of the Gulf of California halfway between La Paz and Mazatlan (∼23.5°N, 108°W), from 7 July to 11 August 2004, with a break from 22 to 27 July. Experiment-mean findings include a net heat input from the atmosphere into the ocean of 70 W m−2. The dominant cooling was an experiment-mean latent heat flux of 108 W m−2, equivalent to an evaporation rate of 0.16 mm h−1. Total accumulated rainfall amounted to 42 mm. The oceanic mixed layer had a depth of approximately 20 m and both warmed and freshened during the experiment, despite a dominance of evaporation over local precipitation. The mean atmospheric boundary layer depth was approximately 410 m, deepening with time from an initial value of 350 m. The mean near-surface relative humidity was 66%, increasing to 73% at the top of the boundary layer. The rawinsondes documented an additional moist layer between 2- and 3-km altitude associated with a land–sea breeze, and a broad moist layer at 5–6 km associated with land-based convective outflow. The observational period included a strong gulf surge around 13 July associated with the onset of the summer monsoon in southern Arizona. During this surge, mean 1000–700-hPa winds reached 12 m s−1, net surface fluxes approached zero, and the atmosphere moistened significantly but little rainfall occurred. The experiment-mean wind diurnal cycle was dominated by mainland Mexico and consisted of a near-surface westerly sea breeze along with two easterly return flows, one at 2–3 km and another at 5–6 km. Each of these altitudes experienced nighttime cloudiness. The corresponding modulation of the radiative cloud forcing diurnal cycle provided a slight positive feedback upon the sea surface temperature. Two findings were notable. One was an advective warming of over 1°C in the oceanic mixed layer temperature associated with the 13 July surge. The second was the high nighttime cloud cover fraction at 5–6 km, dissipating during the day. These clouds appeared to be thin, stratiform, slightly supercooled liquid-phase clouds. The preference for the liquid phase increases the likelihood that the clouds can be advected farther from their source and thereby contribute to a higher-altitude horizontal moisture flux into the United States.


2006 ◽  
Vol 134 (8) ◽  
pp. 2108-2127 ◽  
Author(s):  
Qingfang Jiang ◽  
James D. Doyle

Abstract Two topographically generated cirrus plume events have been examined through satellite observations and real-data simulations. On 30 October 2002, an approximately 70-km-wide cirrus plume, revealed by a high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) image and a series of Geostationary Operational Environmental Satellite (GOES) images, originated from the Sierra Nevada ridge and extended northeastward for more than 400 km. On 5 December 2000, an approximately 400-km-wide cloud plume originated from the Southern Rocky Mountain massif and extended eastward for more than 500 km, the development of which was captured by a series of GOES images. The real-data simulations of the two cirrus plume events successfully capture the presence of these plumes and show reasonable agreement with the MODIS and GOES images in terms of the timing, location, orientation, length, and altitude of these cloud plumes. The synoptic and mesoscale aspects of the plume events, and the dynamics and microphysics relevant to the plume formation, have been discussed. Two common ingredients relevant to the cirrus plume formation have been identified, namely, a relatively deep moist layer aloft with high relative humidity and low temperature (≤−40°C near the cloud top), and strong updrafts over high terrain and slow descent downstream in the upper troposphere associated with terrain-induced inertia–gravity waves. The rapid increase of the relative humidity associated with strong updrafts creates a high number concentration of small ice crystals through homogeneous nucleation. The overpopulated ice crystals decrease the relative humidity, which, in return, inhibits small crystals from growing into large crystals. The small crystals with slow terminal velocities (<0.2 m s−1) can be advected hundreds of kilometers before falling out of the moist layer.


2005 ◽  
Vol 133 (10) ◽  
pp. 3015-3037 ◽  
Author(s):  
Eugene W. McCaul ◽  
Charles Cohen ◽  
Cody Kirkpatrick

Abstract Prior parameter space studies of simulated deep convection are extended to embrace shifts in the environmental temperature. Within the context of the parameter space study design, shifts in this environmental temperature are roughly equivalent to changes in the ambient precipitable water (PW). Two series of simulations are conducted: one in a warm environmental regime that is associated with approximately 60 mm of precipitable water, and another with temperatures 8°C cooler, so that PW is reduced to roughly 30 mm. The sets of simulations include tests of the impact of changes in the buoyancy and shear profile shapes and of changes in mixed- and moist layer depths, all of which have been shown to be important in prior work. Simulations discussed here also feature values of surface-based pseudoadiabatic convective available potential energy (CAPE) of 800, 2000, or 3200 J kg−1, and a single semicircular hodograph having a radius of 12 m s−1, but with variable vertical shear. The simulations reveal a consistent trend toward stronger peak updraft speeds for the cooler temperature (reduced PW) cases, when the other environmental parameters are held constant. Roughly comparable increases in updraft speeds are noted for all combinations of mixed- and moist layer depths. These increases in updraft strength evidently result from both the reduction of condensate loading aloft and the lower altitudes at which the latent heat release by freezing and deposition commences in the cooler, low-PW environments. As expected, maximum storm precipitation rates tend to diminish as PW is decreased, but only slightly, and by amounts not proportionate to the decrease in PW. The low-PW cases thus actually feature larger environment-relative precipitation efficiency than do the high-PW cases. In addition, more hail reaches the surface in the low-PW cases because of reduced melting in the cooler environments. Although these experiments were designed to feature specified amounts of pseudoadiabatic CAPE, it appears that reversible CAPE provides a more accurate prediction of updraft strength, at least for the storms discussed here.


2005 ◽  
Vol 133 (6) ◽  
pp. 1525-1543 ◽  
Author(s):  
B. B. Demoz ◽  
D. O’C. Starr ◽  
K. D. Evans ◽  
A. R. Lare ◽  
D. N. Whiteman ◽  
...  

Abstract Detailed observations of the interactions of a cold front and a dryline over the central United States that led to dramatic undulations in the boundary layer, including an undular bore, are investigated using high-resolution water vapor mixing ratio profiles measured by Raman lidars. The lidar-derived water vapor mixing ratio profiles revealed the complex interaction between a dryline and a cold-frontal system. An elevated, well-mixed, and deep midtropospheric layer, as well as a sharp transition (between 5- and 6-km altitude) to a drier region aloft, was observed. The moisture oscillations due to the undular bore and the mixing of the prefrontal air mass with the cold air at the frontal surface are all well depicted. The enhanced precipitable water vapor and roll clouds, the undulations associated with the bore, the strong vertical circulation and mixing that led to the increase in the depth of the low-level moist layer, and the subsequent lifting of this moist layer by the cold-frontal surface, as well as the feeder flow behind the cold front, are clearly indicated. A synthesis of the Raman lidar–measured water vapor mixing ratio profiles, satellite, radiometer, tower, and Oklahoma Mesonet data indicated that the undular bore was triggered by the approaching cold front and propagated south-southeastward. The observed and calculated bore speeds were in reasonable agreement. Wave-ducting analysis showed that favorable wave-trapping mechanisms existed; a low-level stable layer capped by an inversion, a well-mixed midtropospheric layer, and wind curvature from a low-level jet were found.


Sign in / Sign up

Export Citation Format

Share Document