scholarly journals Improving Large-Eddy Simulation of Neutral Boundary Layer Flow across Grid Interfaces

2015 ◽  
Vol 143 (8) ◽  
pp. 3310-3326 ◽  
Author(s):  
Elijah Goodfriend ◽  
Fotini Katopodes Chow ◽  
Marcos Vanella ◽  
Elias Balaras

Abstract Increasing computational power has enabled grid resolutions that support large-eddy simulation (LES) of the atmospheric boundary layer. These simulations often use grid nesting or adaptive mesh refinement to refine the grid in regions of interest. LES generates errors at grid refinement interfaces, such as resolved energy accumulation, that may compromise solution accuracy. In this paper, the authors test the ability of two LES formulations and turbulence closures to mitigate errors associated with the use of LES on nonuniform grids for a half-channel approximation to a neutral atmospheric boundary layer simulation. Idealized simulations are used to examine flow across coarse–fine and fine–coarse interfaces, as would occur in a two-way nested configuration or with block structured adaptive mesh refinement. Specifically, explicit filtering of the advection term and the mixed model are compared to a standard LES formulation with an eddy viscosity model. Errors due to grid interfaces are evaluated by comparison to uniform grid solutions. It is found that explicitly filtering the advection term provides significant benefits, in that it allows both mass and momentum to be conserved across grid refinement interfaces. The mixed model reduces unphysical perturbations generated by wave reflection at the interfaces. These results suggest that the choice of LES formulation and turbulence closure can be used to help control grid refinement interface errors in atmospheric boundary layer simulations.

Author(s):  
Yansen Wang ◽  
Michael J. Benson

Abstract In this article we describe the details of an ABLE-LBM (Atmospheric Boundary Layer Environment-Lattice Boltzmann Model) validation study for urban building array turbulent flow simulations. The ABLE-LBM large-eddy simulation results were compared with a set of 3D magnetic resonance image (MRI) velocimetry data. The ABLE-LBM simulations used the same building layout and Reynolds numbers operated in the laboratory water channel. The building set-up was an evenly spaced orthogonal array of cubic buildings (height = H) with a central tall building (height = 3H) in the second row. Two building orientations, angled with 0°and 45° wind directions, were simulated with ABLE-LBM. The model produced horizontal and vertical fields of time-averaged velocity fields and compared well with the experimental results. The model also produced urban canyon flows and vortices at front and lee sides and over building tops that were similar in strength and location to the laboratory studies. The turbulent kinetic energy associated with these two wind directions were also presented in this simulation study. It is shown that the building array arrangement, especially the tall building, has a great effect on turbulent wind fields. There is a Karman vortex street on the lee side of the tall building. High turbulent intensity areas are associated with the vortex shedding motions at building edges. In addition, the wind direction is a very important factor for turbulent wind and kinetic energy distribution. This validation study indicated that ABLE-LBM is a viable simulation model for turbulent atmospheric boundary layer flows in the urban building array. The computational speed of ABLE-LBM using the GPU has shown that real-time LES simulation is realizable for a computational domain with several millions grid points.


Sign in / Sign up

Export Citation Format

Share Document