scholarly journals A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation

2018 ◽  
Vol 146 (1) ◽  
pp. 373-386 ◽  
Author(s):  
Jonathan R. Stroud ◽  
Matthias Katzfuss ◽  
Christopher K. Wikle

AbstractThis paper proposes new methodology for sequential state and parameter estimation within the ensemble Kalman filter. The method is fully Bayesian and propagates the joint posterior distribution of states and parameters over time. To implement the method, the authors consider three representations of the marginal posterior distribution of the parameters: a grid-based approach, a Gaussian approximation, and a sequential importance sampling (SIR) approach with kernel resampling. In contrast to existing online parameter estimation algorithms, the new method explicitly accounts for parameter uncertainty and provides a formal way to combine information about the parameters from data at different time periods. The method is illustrated and compared to existing approaches using simulated and real data.

2011 ◽  
Vol 15 (8) ◽  
pp. 2437-2457 ◽  
Author(s):  
S. Nie ◽  
J. Zhu ◽  
Y. Luo

Abstract. The performance of the ensemble Kalman filter (EnKF) in soil moisture assimilation applications is investigated in the context of simultaneous state-parameter estimation in the presence of uncertainties from model parameters, soil moisture initial condition and atmospheric forcing. A physically based land surface model is used for this purpose. Using a series of identical twin experiments in two kinds of initial parameter distribution (IPD) scenarios, the narrow IPD (NIPD) scenario and the wide IPD (WIPD) scenario, model-generated near surface soil moisture observations are assimilated to estimate soil moisture state and three hydraulic parameters (the saturated hydraulic conductivity, the saturated soil moisture suction and a soil texture empirical parameter) in the model. The estimation of single imperfect parameter is successful with the ensemble mean value of all three estimated parameters converging to their true values respectively in both NIPD and WIPD scenarios. Increasing the number of imperfect parameters leads to a decline in the estimation performance. A wide initial distribution of estimated parameters can produce improved simultaneous multi-parameter estimation performances compared to that of the NIPD scenario. However, when the number of estimated parameters increased to three, not all parameters were estimated successfully for both NIPD and WIPD scenarios. By introducing constraints between estimated hydraulic parameters, the performance of the constrained three-parameter estimation was successful, even if temporally sparse observations were available for assimilation. The constrained estimation method can reduce RMSE much more in soil moisture forecasting compared to the non-constrained estimation method and traditional non-parameter-estimation assimilation method. The benefit of this method in estimating all imperfect parameters simultaneously can be fully demonstrated when the corresponding non-constrained estimation method displays a relatively poor parameter estimation performance. Because all these constraints between parameters were obtained in a statistical sense, this constrained state-parameter estimation scheme is likely suitable for other land surface models even with more imperfect parameters estimated in soil moisture assimilation applications.


2016 ◽  
Vol 144 (9) ◽  
pp. 3465-3486 ◽  
Author(s):  
Blake J. Allen ◽  
Edward R. Mansell ◽  
David C. Dowell ◽  
Wiebke Deierling

Total lightning observations that will be available from the GOES-R Geostationary Lightning Mapper (GLM) have the potential to be useful in the initialization of convection-resolving numerical weather models, particularly in areas where other types of convective-scale observations are sparse or nonexistent. This study used the ensemble Kalman filter (EnKF) to assimilate real-data pseudo-GLM flash extent density (FED) observations at convection-resolving scale for a nonsevere multicell storm case (6 June 2000) and a tornadic supercell case (8 May 2003). For each case, pseudo-GLM FED observations were generated from ground-based lightning mapping array data with a spacing approximately equal to the nadir pixel width of the GLM, and tests were done to examine different FED observation operators and the utility of temporally averaging observations to smooth rapid variations in flash rates. The best results were obtained when assimilating 1-min temporal resolution data using any of three observation operators that utilized graupel mass or graupel volume. Each of these three observation operators performed well for both the weak, disorganized convection of the multicell case and the much more intense convection of the supercell case. An observation operator using the noninductive charging rate performed poorly compared to the graupel mass and graupel volume operators, a result that appears likely to be due to the inability of the noninductive charging rate to account for advection of space charge after charge separation occurs.


2012 ◽  
Vol 27 (4) ◽  
pp. 877-897 ◽  
Author(s):  
A. H. ELSheikh ◽  
C. C. Pain ◽  
F. Fang ◽  
J. L. M. A. Gomes ◽  
I. M. Navon

Sign in / Sign up

Export Citation Format

Share Document