scholarly journals Fog and low-level stratus in coupled ocean-atmosphere simulations of the northern California Current System upwelling season

Author(s):  
R. M. Samelson ◽  
S. P. de Szoeke ◽  
E. D. Skyllingstad ◽  
P. L. Barbour ◽  
S. M. Durski

AbstractFog and low-level stratus during April through September 2009 are examined in a set of coupled ocean-atmosphere numerical simulations of the northern California Current System (CCS). The model configurations differ only in the choice of planetary boundary layer (PBL) parameterization scheme and, in one case, surface flux scheme. The results suggest that fog formation in this region primarily occurs through condensation at the surface induced locally by surface cooling, when moist offshore air is advected over cold upwelled waters and the shallow coastal marine PBL is further stabilized by warm, dry, continental air that extends offshore above the PBL inversion. These results are consistent with some but not all prior hypotheses for fog formation in the CCS region. Fog formation by downward growth of a pre-existing stratus layer is also found in the simulations but dominates only in those simulations with PBL schemes that produce an extensive and evidently unphysical stratus layer at 200-m height, which serves as the source for the downward growth. The stronger fog response in later summer months arises from seasonal warming of offshore SST, which increases the moisture content and temperature of the upstream air mass, while cool coastal SSTs are maintained by upwelling. On synoptic timescales, a similar influence of fog response on upstream conditions is found but controlled instead by changes in wind direction. These results suggest that the critical factors determining the evolution of the coastal fog regime in a warming climate are likely the temperature of upwelling source waters and the offshore flow of continental air.

2019 ◽  
Vol 148 (1) ◽  
pp. 259-287
Author(s):  
R. M. Samelson ◽  
L. W. O’Neill ◽  
D. B. Chelton ◽  
E. D. Skyllingstad ◽  
P. L. Barbour ◽  
...  

Abstract The influence of mesoscale sea surface temperature (SST) variations on wind stress and boundary layer winds is examined from coupled ocean–atmosphere numerical simulations and satellite observations of the northern California Current System. Model coupling coefficients relating the divergence and curl of wind stress and wind to downwind and crosswind SST gradients are generally smaller than observed values and vary by a factor of 2 depending on planetary boundary layer (PBL) scheme, with values larger for smoothed fields on the 0.25° observational grid than for unsmoothed fields on the 12-km model grid. Divergence coefficients are larger than curl coefficients on the 0.25° grid but not on the model grid, consistent with stronger scale dependence for the divergence response than for curl in a spatial cross-spectral analysis. Coupling coefficients for 10-m equivalent neutral stability winds are 30%–50% larger than those for 10-m wind, implying a correlated effect of surface-layer stability variations. Crosswind surface air temperature and SST gradients are more strongly coupled than downwind gradients, while the opposite is true for downwind and crosswind heat flux and SST gradients. Midlevel boundary layer wind coupling coefficients show a reversed response relative to the surface that is predicted by an analytical model; a predicted second reversal with height is not seen in the simulations. The relative values of coupling coefficients are consistent with previous results for the same PBL schemes in the Agulhas Return Current region, but their magnitudes are smaller, likely because of the effect of mean wind on perturbation heat fluxes.


Harmful Algae ◽  
2015 ◽  
Vol 44 ◽  
pp. 63
Author(s):  
Angelicque E. White ◽  
Katie S. Watkins-Brandt ◽  
S. Morgaine McKibben ◽  
A. Michelle Wood ◽  
Matthew Hunter ◽  
...  

Harmful Algae ◽  
2014 ◽  
Vol 37 ◽  
pp. 38-46 ◽  
Author(s):  
Angelicque E. White ◽  
Katie S. Watkins-Brandt ◽  
S. Morgaine McKibben ◽  
A. Michelle Wood ◽  
Matthew Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document