Importance of Mid-Level Moisture for Tropical Cyclone Formation in Easterly and Monsoon Environments over the Western North Pacific

Author(s):  
Hsu-Feng Teng ◽  
Ying-Hwa Kuo ◽  
James M. Done

AbstractThis study explores the importance of mid-level moisture for tropical cyclone (TC) formation in monsoon and easterly environments over the western North Pacific in regional simulations (15-km resolution). The Weather Research and Forecasting (WRF) model is used to simulate 22 TCs that form in monsoon environments (MTCs) and 13 TCs that form in easterly environments (ETCs) over the period 2006–2010. To characterize the moisture contribution, simulations with mid-level moisture improved through assimilation of global positioning system (GPS) radio occultation (RO) data (labeled as EPH) are compared to those without (labeled as GTS). In general, the probability of TC formation being detected in the simulations is higher for MTCs than ETCs, regardless of GPS RO assimilation, especially for the monsoon trough environment. Fifty-four percent of ETC formations are sensitive to the mid-level moisture patterns, while only 18% for MTC formations are sensitive, indicating the importance of mid-level moisture is higher for ETC formations. Because of a model dry bias, the simulation of TC formation in an observed environment with lower vorticity but higher moisture is sensitive to the moisture increase through GPS RO data. Sensitivity experiments show that if the moisture in GTS is replaced by that in EPH, the TC formation can be detected in the GTS simulations. In turn, the TC formation cannot be detected in the EPH simulations with GTS moisture. The mechanism causing the difference in simulation performance of TC formation is attributed to more diabatic heating release and stronger positive potential vorticity tendency at mid-levels around the disturbance center caused by the higher moisture magnitudes.

2015 ◽  
Vol 15 (11) ◽  
pp. 16111-16139 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity in the environment, which deforms the quasi-Lagrangian boundary of the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. However, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2015 ◽  
Vol 15 (24) ◽  
pp. 14041-14053 ◽  
Author(s):  
L. Wu ◽  
H. Su ◽  
R. G. Fovell ◽  
T. J. Dunkerton ◽  
Z. Wang ◽  
...  

Abstract. The impacts of environmental moisture on the intensification of a tropical cyclone (TC) are investigated in the Weather Research and Forecasting (WRF) model, with a focus on the azimuthal asymmetry of the moisture impacts relative to the storm path. A series of sensitivity experiments with varying moisture perturbations in the environment are conducted and the Marsupial Paradigm framework is employed to understand the different moisture impacts. We find that modification of environmental moisture has insignificant impacts on the storm in this case unless it leads to convective activity that deforms the quasi-Lagrangian boundary of the storm and changes the moisture transport into the storm. By facilitating convection and precipitation outside the storm, enhanced environmental moisture ahead of the northwestward-moving storm induces a dry air intrusion to the inner core and limits TC intensification. In contrast, increased moisture in the rear quadrants favors intensification by providing more moisture to the inner core and promoting storm symmetry, with primary contributions coming from moisture increase in the boundary layer. The different impacts of environmental moisture on TC intensification are governed by the relative locations of moisture perturbations and their interactions with the storm Lagrangian structure.


2020 ◽  
Vol 143 (1-2) ◽  
pp. 505-520
Author(s):  
Yuk Sing Lui ◽  
Louis Kwan Shu Tse ◽  
Chi-Yung Tam ◽  
King Heng Lau ◽  
Jilong Chen

AbstractPerformances of the Model for Prediction Across Scales-Atmosphere (MPAS-A) in predicting and the Weather Research and Forecasting (WRF) model in simulating western North Pacific (WNP) tropical cyclone (TC) tracks and intensities have been compared. Parallel simulations of the same historical storms that made landfall over southern China, namely, TCs Hope (1979), Gordon (1989), Koryn (1993), Imbudo (2003), Dujuan (2003), Molave (2009), Hato (2017) and Mangkhut (2018), were carried out using WRF and MPAS-A, with initial conditions (and, for WRF, lateral boundary conditions as well) taken from ERA-interim. For MPAS-A, the model was integrated using a standard 60-to-3-km variable-resolution global grid mesh and also on 160-to-2-km grids customized to cover the TC tracks with the highest resolution mesh. The WRF model was integrated using a 15-km/3-km nested domain. No TC bogus scheme was applied when initializing the MPAS-A and WRF simulations. It was found that while TC tracks were reasonably captured by the two models configured variously, the storm intensities were underestimated in general. Given MPAS-A runs were initial value predictions whereas WRF runs were dynamically downscaled from ERA-interim, the finding that MPAS-A has comparable (or slightly better) performance as (than) WRF is noteworthy. To further examine the sensitivity of the MPAS-A TC forecasts to the initial data, additional experiments were carried out for TCs Molave and Hope using ERA5 reanalysis as initial conditions. The ERA5 initialized runs showed significant (slight) improvement in intensity (track) evolution, suggesting that the underestimated TC intensity is likely related to inferior representation of storms in the ERA-interim initial fields. Furthermore, additional runs using another customized 60-to-2-km mesh showed a reasonable improvement in capturing the TC tracks, suggesting that the track forecast accuracy of MPAS-A in TC can be sensitive to the grid resolution in the coarsest part of the variable-resolution mesh used.


2016 ◽  
Author(s):  
J. Yoo ◽  
J. Galewsky

Abstract. Using the Weather Research and Forecasting (WRF) model (version 3.5.1), dynamical downscaling of the Community Climate System Model, version 4 (CCSM4), simulations of the last glacial maximum (LGM) and 20th century (ensemble member #6) run were conducted to simulate ten years of climate over the western North Pacific during the LGM and modern climates, respectively. This paper describes the downscaling procedures for the Weather Research and Forecasting (WRF) model experiments and the quantitative and qualitative model validations comparing with the CCSM4 LGM and 20th century simulations results. Results of the dynamical downscaling of the CCSM4 LGM paleoclimate and twentieth century using the WRF model show not only that the WRF model is capable of long-term simulations in the paleoclimate state of LGM, but also that the WRF model can correct biases in the general circulation model (GCM), producing more realistic spatial distributions of the pressure-level variables. The downscaling of a GCM model using the WRF model (36 km) for the regional climate simulation is considered computationally cost-effective and reliable from the perspectives of model thermodynamics in general, although there are some model errors still existing with dynamic variables.


SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 1-5 ◽  
Author(s):  
Udai Shimada ◽  
Munehiko Yamaguchi ◽  
Shuuji Nishimura

2008 ◽  
Vol 136 (6) ◽  
pp. 2006-2022 ◽  
Author(s):  
Cheng-Shang Lee ◽  
Kevin K. W. Cheung ◽  
Jenny S. N. Hui ◽  
Russell L. Elsberry

Abstract The mesoscale features of 124 tropical cyclone formations in the western North Pacific Ocean during 1999–2004 are investigated through large-scale analyses, satellite infrared brightness temperature (TB), and Quick Scatterometer (QuikSCAT) oceanic wind data. Based on low-level wind flow and surge direction, the formation cases are classified into six synoptic patterns: easterly wave (EW), northeasterly flow (NE), coexistence of northeasterly and southwesterly flow (NE–SW), southwesterly flow (SW), monsoon confluence (MC), and monsoon shear (MS). Then the general convection characteristics and mesoscale convective system (MCS) activities associated with these formation cases are studied under this classification scheme. Convection processes in the EW cases are distinguished from the monsoon-related formations in that the convection is less deep and closer to the formation center. Five characteristic temporal evolutions of the deep convection are identified: (i) single convection event, (ii) two convection events, (iii) three convection events, (iv) gradual decrease in TB, and (v) fluctuating TB, or a slight increase in TB before formation. Although no dominant temporal evolution differentiates cases in the six synoptic patterns, evolutions ii and iii seem to be the common routes taken by the monsoon-related formations. The overall percentage of cases with MCS activity at multiple times is 63%, and in 35% of cases more than one MCS coexisted. Most of the MC and MS cases develop multiple MCSs that lead to several episodes of deep convection. These two patterns have the highest percentage of coexisting MCSs such that potential interaction between these systems may play a role in the formation process. The MCSs in the monsoon-related formations are distributed around the center, except in the NE–SW cases in which clustering of MCSs is found about 100–200 km east of the center during the 12 h before formation. On average only one MCS occurs during an EW formation, whereas the mean value is around two for the other monsoon-related patterns. Both the mean lifetime and time of first appearance of MCS in EW are much shorter than those developed in other synoptic patterns, which indicates that the overall formation evolution in the EW case is faster. Moreover, this MCS is most likely to be found within 100 km east of the center 12 h before formation. The implications of these results to internal mechanisms of tropical cyclone formation are discussed in light of other recent mesoscale studies.


Sign in / Sign up

Export Citation Format

Share Document