dry air
Recently Published Documents


TOTAL DOCUMENTS

1152
(FIVE YEARS 188)

H-INDEX

54
(FIVE YEARS 5)

2022 ◽  
Vol 101 (1) ◽  
pp. 27-42
Author(s):  
ZHIWEI GAO ◽  
◽  
DONGPO WANG ◽  
BAOMING GONG ◽  
CAIYAN DENG ◽  
...  

Fatigue tests of cruciform welded joints made of Q355B steel at very-high-cycle fatigue (VHCF) regimes were carried out on as-welded specimens using highfrequency mechanical impact (HFMI) treatment in dry air and water-spray environments, respectively. The influence of the environment on fatigue life was more obvious in the VHCF regime. It was found that S-N curves became flat over the range of 106–108 cycles for as-welded specimens, while a continuously decreasing S-N curve existed for HFMI-treated specimens. Fatigue cracks initiated from the weld toe of the as-welded specimens in dry air and water-spray environments. Due to residual stress, the crack initiation site transition of HFMI-treated specimens from the weld toe to the weld root and base metal was observed at lower stress levels. Moreover, hydrogen-assisted quasi-cleavage and intergranular fracture were captured using a scanning electron microscope and a hydrogen permeation test.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Nely Ana Mufarida ◽  
Asroful Abidin

The events that occur during the drying include heat and mass transfer processes. So based on this, this research will discuss "Analysis of Heat and Mass Transfer in the Process of Making Instant Soy Milk Using a Laboratory Scale Spray Dryer". The research method used is the experimental method. The research that will be carried out will consist of preliminary research and main research. The purpose of this preliminary study was to determine the drying air temperature, fogging pressure, and the ratio of soy milk powder to water in solution. The best results from preliminary research are used in the main study. Data processing using technical analysis. The results showed that an increase in the drying air temperature of 80 ° C, 85 ° C, 90 ° C, 95 ° C, and 100 ° C caused a decrease in the need for drying air, namely 27.323 kg of dry air / hour to 9.840 kg of dry air / hour, time the drying of the material is shorter, namely 1 hour 10 minutes to 1 hour, the increase in thermal efficiency is 81.9% to 84.3%, and the increase in product weight coming out of the drying chamber is 3.1 grams to 4.1 grams. The results of the questionnaire showed that the panelists tended to rank taste first (65%), aroma second (61.25%), color third (47.5%).


2021 ◽  
Vol 21 (2) ◽  
pp. 201
Author(s):  
Marcelinus Christwardana ◽  
Ifa Miftahushudury

The drying technique of Antiozonant Wax (AOW) using drying air in the spray drying tower has a considerable effect on the produced AOW powder. In this study, the drying air flow rate was measured in such a way that AOW can transform into a powder with a size of 800 mesh. The diameter and height of the spray drying tower are 1 and 6 m, respectively. Meanwhile, the AOW flow rate to the spray drying tower varies from 100 kg/hour to 500 kg/hour. The intake AOW temperature was 70 °C and at the outlet was 40 °C, while the drying air temperatures in and out of the spray drying tower were 30 and 55 °C, respectively. From the calculation results, the flow rate of the drying air is directly proportional to the flow rate of the AOW into the spray drying tower but inversely proportional to the speed of the AOW powder down the spray drying tower. In the meantime, the drying period for AOW to become a powder is between 1.033 – 1.279 s, not significantly different. It gives insight into the need to dry air in the spray drying tower configuration so that the findings will conform to the predetermined requirements.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 114
Author(s):  
Nataliia Tarasova ◽  
Irina Animitsa

In this paper, the review of the new class of ionic conductors was made. For the last several years, the layered perovskites with Ruddlesden-Popper structure AIILnInO4 attracted attention from the point of view of possibility of the realization of ionic transport. The materials based on Ba(Sr)La(Nd)InO4 and the various doped compositions were investigated as oxygen-ion and proton conductors. It was found that doped and undoped layered perovskites BaNdInO4, SrLaInO4, and BaLaInO4 demonstrate mixed hole-ionic nature of conductivity in dry air. Acceptor and donor doping leads to a significant increase (up to ~1.5–2 orders of magnitude) of conductivity. One of the most conductive compositions BaNd0.9Ca0.1InO3.95 demonstrates the conductivity value of 5∙10−4 S/cm at 500 °C under dry air. The proton conductivity is realized under humid air at low (<500 °C) temperatures. The highest values of proton conductivity are attributed to the compositions BaNd0.9Ca0.1InO3.95 and Ba1.1La0.9InO3.95 (7.6∙10−6 and 3.2∙10−6 S/cm correspondingly at the 350 °C under wet air). The proton concentration is not correlated with the concentration of oxygen defects in the structure and it increases with an increase in the unit cell volume. The highest proton conductivity (with 95−98% of proton transport below 400 °C) for the materials based on BaLaInO4 was demonstrated by the compositions with dopant content no more that 0.1 mol. The layered perovskites AIILnInO4 are novel and prospective class of functional materials which can be used in the different electrochemical devices in the near future.


MAUSAM ◽  
2021 ◽  
Vol 63 (4) ◽  
pp. 623-638
Author(s):  
SURESH RAM ◽  
M. MOHAPATRA

A study is undertaken to analyse the characteristics of squall over Delhi and to find out the potential precursors for its prediction. For this purpose, the squall data of Indira Gandhi International (IGI) airport along with the surface and upper air meteorological parameters recorded by India Meteorological Department have been considered for all individual months over the period of 2001-2010. Apart from the characteristics like period of occurrence, intensity, duration, frequency and nature of squall, the environmental changes due to squall and thermodynamic features and indices leading to squall have been analysed. Higher than normal warming of lower troposphere upto 700 hPa level in March, April & June and at 925 hPa in May accompanied with cold dry air advection leading to lower than normal dew point in middle and upper levels (500-300 hPa in March, May and June, 400-300 hPa in April) are favourable for occurrence of the squall over Delhi. The lower level inversion in March and April only also helps in the occurrence of squall. In monsoon months of July- September, cold and dry air advection in middle and upper tropospheric levels (8- 15° C below normal dew point at 400-300 hPa in July, about 15° C below normal dew point at 300-200 hPa in August and 17- 24° C below normal dew point at 500-300 hPa in September) favours occurrence of squall over Delhi. Unlike pre-monsoon months lower level moisture does not play any role for the occurrence of squall over Delhi in monsoon months. Significantly higher than normal SWEAT index in March to September at 0000 UTC can be used as predictor of squall over Delhi on that day. Total totals index is the next suitable precursor for all the months except June.


Author(s):  
Mai Hao ◽  
Boya Zhang ◽  
Xingwen Li ◽  
Jiayu Xiong

Abstract Perfluoroketone C5F10O is considered as a potential SF6 alternative. The GWP (Global warming potential) of C5F10O is extremely low and even close to that of air. We investigated the electrical insulation properties of the C5F10O by pulsed Townsend (PT) experiment. The rate coefficients of ionization, attachment, and effective ionization, as well as the electron drift velocity and the longitudinal electron diffusion coefficient in pure C5F10O were obtained. We conclude that the density-reduced critical electric field of pure C5F10O is (768±5)Td and ion kinetics are not exist or negligible in C5F10O. Furthermore, the swarm parameters of C5F10O /CO2 and C5F10O /Air mixtures with C5F10O percentage up to 30% were measured in a wide E/N-range. C5F10O has good synergism with both CO2 and dry air and air behaves better. The synergistic effect coefficients were also calculated. To have the same (E/N)crit as pure SF6, the mixing ratio of C5F10O should be 30% in the mixture with CO2 and 26% in the mixture with dry air. The obtained electron swarm parameters in this paper provide a supplement for the fundamental data set of these novel gases, and also lay the foundation for fluid model simulations of gas discharge.


Alloy Digest ◽  
2021 ◽  
Vol 70 (12) ◽  

Abstract Outokumpu Moda 409/4512 is a weldable, titanium-stabilized 11.5% chromium ferritic stainless steel with good oxidation resistance in dry air. Because of its titanium alloying, Outokumpu Moda 409/4512 can be welded in all dimensions without becoming susceptible to intergranular corrosion. It is possible to use Outokumpu Moda 409/4512 at elevated temperatures, for example in automotive exhaust systems, where it is often used to replace aluminum-coated carbon steel. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-1342. Producer or source: Outokumpu Oyj.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


Sign in / Sign up

Export Citation Format

Share Document