scholarly journals Dynamical downscaling of the western North Pacific from CCSM4 simulations during the last glacial maximum and late 20th century using the WRF model: model configuration and validation

Author(s):  
J. Yoo ◽  
J. Galewsky

Abstract. Using the Weather Research and Forecasting (WRF) model (version 3.5.1), dynamical downscaling of the Community Climate System Model, version 4 (CCSM4), simulations of the last glacial maximum (LGM) and 20th century (ensemble member #6) run were conducted to simulate ten years of climate over the western North Pacific during the LGM and modern climates, respectively. This paper describes the downscaling procedures for the Weather Research and Forecasting (WRF) model experiments and the quantitative and qualitative model validations comparing with the CCSM4 LGM and 20th century simulations results. Results of the dynamical downscaling of the CCSM4 LGM paleoclimate and twentieth century using the WRF model show not only that the WRF model is capable of long-term simulations in the paleoclimate state of LGM, but also that the WRF model can correct biases in the general circulation model (GCM), producing more realistic spatial distributions of the pressure-level variables. The downscaling of a GCM model using the WRF model (36 km) for the regional climate simulation is considered computationally cost-effective and reliable from the perspectives of model thermodynamics in general, although there are some model errors still existing with dynamic variables.

2016 ◽  
Vol 8 (3) ◽  
pp. 1229-1247 ◽  
Author(s):  
Jinwoong Yoo ◽  
Joseph Galewsky ◽  
Suzana J. Camargo ◽  
Robert Korty ◽  
Ryan Zamora

2007 ◽  
Vol 3 (3) ◽  
pp. 439-451 ◽  
Author(s):  
W. Yanase ◽  
A. Abe-Ouchi

Abstract. The surface conditions and atmospheric circulation over East Asia and the North Pacific during the last glacial maximum have been investigated using outputs from several coupled atmosphere-ocean general circulation model in the PMIP2 database. During the boreal summer, the weakening of the high pressure system over the North Pacific and less precipitation over East Asia are found in most models. The latter can be attributed to reduced moisture transport. During the boreal winter, an intensification of the Aleutian low and southward shift of the westerly jet stream in the upper troposphere are found in most models. Some of the results in the present study seem to be consistent with the paleoclimatic reconstructions in the previous studies: pollen and lake-status records suggest dry climate over East Asia during the last glacial maximum, and part of the dust record has a signal that the East Asian winter monsoon was more strong and the westerly jet stream in the upper troposphere was further south during the last glacial maximum than at the present day. This result confirms that a coupled atmosphere-ocean general circulation model is a promising tool to understand not only the global climate but also the regional climate in the past.


2009 ◽  
Vol 5 (4) ◽  
pp. 1883-1899
Author(s):  
M. B. Unterman ◽  
T. J. Crowley ◽  
K. I. Hodges ◽  
S. J. Kim ◽  
D. J. Erickson

Abstract. High resolution animations of the ice age surface have been developed as a tool for in-depth analysis of "paleometeorological" features. Synoptic-scale weather conditions of the Last Glacial Maximum (LGM) are simulated using the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3.6) on a globally resolved T170 (~75 km) grid domain. Model outputs have been saved at hourly intervals in order to better resolve diurnal features. The simulation has been run in tandem with a lower temporally resolved simulation of Kim et al. (2008) to enable a first-pass assessment of significance of features in the shorter run. Both simulations were forced with modified CLIMAP sea ice and sea surface temperatures (SSTs), reduced global CO2, ice sheet topography, lower sea level, and 21 000 BP orbital parameters. Results from the North Pacific show continued high storm activity during the LGM, whereas the North Atlantic tends to be more quiescent. Plots of storm tracks indicate that all North Pacific storms were steered northward into the Gulf of Alaska, bringing relatively warm air and precipitation into the region. This result is consistent with increased poleward heat transport into the region in the LGM climatological run as well as the absence of evidence for glaciation in middle Alaska. Storm-track trajectories should also have decreased upwelling along the northwest American coast – a response consistent with some geological data. The storms and other atmospheric features are illustrated in a high-resolution animation, which may also be useful as a teaching tool. Further investigation of these runs may provide additional insight into features such as wave-wave interactions, which have previously been unavailable to the research community for an alternate-Earth climate that has been at least as common as the present one over the last 500 000 years.


2005 ◽  
Vol 18 (15) ◽  
pp. 2826-2846 ◽  
Author(s):  
Flávio Justino ◽  
Axel Timmermann ◽  
Ute Merkel ◽  
Enio P. Souza

Abstract A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing.


Sign in / Sign up

Export Citation Format

Share Document