scholarly journals Research on Asteroids of Christian Ludwig Gerling and His Students in the Nineteenth Century

2018 ◽  
Vol 49 (1) ◽  
pp. 83-98 ◽  
Author(s):  
Julia Remchin ◽  
Andreas Schrimpf

One of the major topics in astronomy at the beginning of the nineteenth century was the interpretation of the observations of the first asteroids. In 1810, Christian Ludwig Gerling at the age of 22 came to Göttingen University to continue his academic studies. Supervised by Carl Friedrich Gauß at the observatory, he was engaged in studies of theoretical and practical astronomy. Starting in 1812, Gerling accepted the responsibility for collecting observational data of the asteroid Vesta from the European observatories and for calculating the ephemeris of this new minor planet. In 1817, Gerling was appointed professor at Marburg University. One of his early astronomical projects in Marburg was his contribution to the Berliner Akademische Sternkarten. After completion of his observatory in 1841, Gerling’s students started observing and theoretically analysing the orbits of the continuously newly discovered asteroids including the perturbation of the larger solar system bodies. The observations at Gerling’s observatory are the first astrometric measurements of solar system’s minor bodies of Hesse.

2006 ◽  
Vol 2 (S236) ◽  
pp. 377-380
Author(s):  
K. Černis ◽  
J. Zdanavičius ◽  
K. Zdanavičius ◽  
G. Tautvaišienė

AbstractWe describe an observational project devoted to astrometric observations of Near-Earth Objects (NEO), main belt asteroids and comets at the Molėtai Observatory, Lithuania. Exposures are obtained with the two telescopes of the observatory: 0.35/0.50 m f/3.5 Maksutov telescope and the 1.65 m reflector with focal reductor f/3.1 and CCD camera. The results of more than 10,000 positions of asteroids and comets have been published in the Minor Planet Circulars and Minor Planet Electronic Circulars. During the 2001–2006 period 130 new asteroids were discovered. The latest discovery is the high-inclination asteroid 2006 SF77 belonging to the NEO Aten group.


2015 ◽  
Vol 11 (T29A) ◽  
pp. 340-364
Author(s):  
Steve Chesley ◽  
Daniela Lazzaro ◽  
Andrea Milani ◽  
Yoshikawa Makoto ◽  
Shinsuke Abe ◽  
...  

This triennium has seen progress in a number of directions related to Commission 20 objectives. Foremost, the growth in the number of astrometric observations of small solar system bodies continues to accelerate and the total number of measurements recorded by the Minor Planet Center now exceeds 135 million. Currently the Pan-STARRS project and the Catalina Sky Survey (CSS) dominate detection and discovery efforts, while the NEO-WISE space mission contributes infrared detections valuable for understanding the size distribution of populations. Looking forward, the Large Synoptic Survey Telescope (LSST) is now funded and in construction on Cerro Pachon in Chile. LSST has the potential to revolutionize the field by conducting a multi-color, ten-year, all-sky survey with a limiting magnitude ~24.5 in the r-band. Survey operations are set to begin in 2022.


2008 ◽  
Vol 14 (2) ◽  
pp. 56-67
Author(s):  
Ya.S. Yatskiv ◽  
◽  
A.P. Vidmachenko ◽  
O.V. Morozhenko ◽  
M.G. Sosonkin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.


2016 ◽  
Vol 25 (4) ◽  
Author(s):  
K. Černis ◽  
I. Wlodarczyk ◽  
J. Zdanavičius

AbstractWe present the statistics of the asteroids observed and discovered at the Molėtai Observatory, Lithuania, in 2008–2009 within the project for astrometric observations of the near-Earth objects (NEOs), the main belt asteroids and comets. CCD observations of the asteroids were obtained with the 35/51-cm Maksutov-type meniscus telescope. In the Minor Planet Circulars and the Minor Planet Electronic Circulars (2008–2009), 11 900 astrometric positions of 2522 asteroids were published. Among them 95 were new asteroids, including four belonging to the Trojan group: (352655) 2008QX28, 2008 SE8, (353194) 2009 SM100 and (264068) 2009 SQ148. For the asteroids discovered at Molėtai their precise orbits are calculated. Because of short observational arc, a few asteroids have low-precision orbits and some asteroids are considered lost. For the three Main Belt asteroids with low-precision orbital elements, 2008 QP32, 2008 SD8 and 2008 SG150, we present their ephemerides for 2017. They can be brighter than 20 mag.


2018 ◽  
Vol 123 (8) ◽  
pp. 2038-2064 ◽  
Author(s):  
A. I. Ermakov ◽  
R. S. Park ◽  
B. G. Bills

Sign in / Sign up

Export Citation Format

Share Document