Thermal Conductivity of Uniaxial Coated Cylindrically Orthotropic Fiber-Reinforced Composite with Thermal Barriers

1995 ◽  
Vol 29 (13) ◽  
pp. 1719-1724 ◽  
Author(s):  
Y. Lu ◽  
K. Y. Donaldson ◽  
D. P. H. Hasselman ◽  
J. R. Thomas
2016 ◽  
Vol 07 (03) ◽  
pp. 1650006 ◽  
Author(s):  
Alexander L. Kalamkarov ◽  
Igor V. Andrianov ◽  
Pedro M. C. L. Pacheco ◽  
Marcelo A. Savi ◽  
Galina A. Starushenko

The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document