scholarly journals Multiple parameters and target optimization of splitter blades for axial spiral blade blood pump using computational fluid mechanics, neural networks, and particle image velocimetry experiment

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110393
Author(s):  
Zheqin Yu ◽  
Jianping Tan ◽  
Shuai Wang ◽  
Bin Guo

The blood pump is an implantable device with strict performance requirements. Any effective structural improvement will help to improve the treatment of patients. However, the research of blood pump structure improvement is a complex optimization problem with multiple parameters and objectives. This study takes the splitter blade as the object of structural improvement. Computational fluid mechanics and neural networks are combined in research and optimization. And hydraulic experiments and micro particle image velocimetry technology were used. In the optimization study, the number of blades, axial length and circumferential offset are optimization parameters, and hydraulic performance and hemolytic prediction index are optimization targets. The study analyzes the influence of each parameter on performance and completes the optimization of the parameters. In the results, the optimal parameters of number of blades, axial length ratio, and circumferential offset are 2.6° and 0.41°, respectively. Under optimized parameters, hydraulic performance can be significantly improved. And the results of hemolysis prediction and micro particle image velocimetry experiments reflect that there is no increase in the risk of hemolytic damage. The results of this study provide a method and ideas for improving the structure of the axial spiral blade blood pump. The established optimization method can be effectively applied to the design and research of axial spiral blade blood pumps with complex, high precision, and multiple parameters and targets.

2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3090 ◽  
Author(s):  
Fahrettin Ergin ◽  
Bo Watz ◽  
Nicolai Gade-Nielsen

Image-based sensor systems are quite popular in micro-scale flow investigations due to their flexibility and scalability. The aim of this manuscript is to provide an overview of current technical possibilities for Particle Image Velocimetry (PIV) systems and related image processing tools used in microfluidics applications. In general, the PIV systems and related image processing tools can be used in a myriad of applications, including (but not limited to): Mixing of chemicals, droplet formation, drug delivery, cell counting, cell sorting, cell locomotion, object detection, and object tracking. The intention is to provide some application examples to demonstrate the use of image processing solutions to overcome certain challenges encountered in microfluidics. These solutions are often in the form of image pre- and post-processing techniques, and how to use these will be described briefly in order to extract the relevant information from the raw images. In particular, three main application areas are covered: Micro mixing, droplet formation, and flow around microscopic objects. For each application, a flow field investigation is performed using Micro-Particle Image Velocimetry (µPIV). Both two-component (2C) and three-component (3C) µPIV systems are used to generate the reported results, and a brief description of these systems are included. The results include detailed velocity, concentration and interface measurements for micromixers, phase-separated velocity measurements for the micro-droplet generator, and time-resolved (TR) position, velocity and flow fields around swimming objects. Recommendations on, which technique is more suitable in a given situation are also provided.


2005 ◽  
Vol 39 (3) ◽  
pp. 507-513 ◽  
Author(s):  
L. Bitsch ◽  
L. H. Olesen ◽  
C. H. Westergaard ◽  
H. Bruus ◽  
H. Klank ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document