Numerical simulation for in-cloud icing of three-dimensional wind turbine blades

SIMULATION ◽  
2017 ◽  
Vol 94 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu
2014 ◽  
Vol 1070-1072 ◽  
pp. 1883-1887 ◽  
Author(s):  
Xiao Ming Chen ◽  
Shun Kang

To be able to more accurate analysis aerodynamic characteristic variation under yaw of NREL Phase VI wind turbine. The influence of yaw on the aerodynamic characteristic by using a three-dimensional unsteady CFD methods based sliding mesh in this paper. To flow, the overall performance and Cp of the three-dimensional flow numerical simulation were compared with experimental results with the same wind speeds to confirm the reliability of the model at a given axial wind speed conditions. In the yaw conditions, the effect of yaw on the aerodynamic performance of wind turbine blades, changing law and reveal the aerodynamic performance is in the flow details and rules in different azimuth.


2013 ◽  
Vol 284-287 ◽  
pp. 518-522
Author(s):  
Hua Wei Chi ◽  
Pey Shey Wu ◽  
Kami Ru Chen ◽  
Yue Hua Jhuo ◽  
Hung Yun Wu

A wind-power generation system uses wind turbine blades to convert the kinetic energy of wind to drive a generator which in turn yields electricity, the aerodynamic performance of the wind turbine blades has decisive effect on the cost benefit of the whole system. The aerodynamic analysis and the optimization of design parameters for the wind turbine blades are key techniques in the early stage of the development of a wind-power generation system. It influences the size selection of connecting mechanisms and the specification of parts in the design steps that follows. A computational procedure and method for aerodynamics optimization was established in this study for three-dimensional blades and the rotor design of a wind turbine. The procedure was applied to improving a previously studied 25kW wind turbine rotor design. Results show that the aerodynamic performance of the new three-dimensional blades has remarkable improvement after optimization.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


2013 ◽  
Vol 446-447 ◽  
pp. 452-457 ◽  
Author(s):  
Yong Wang ◽  
De Tian ◽  
Wei He

The hoisting forces on a 38.5m wind turbine blade in multiple positions are computed using the computational fluid dynamics (CFD) method. The computation model is constructed with the steady wind conditions, blade mesh model and the blade positions which are determined by the blade pitch angle, azimuth angle and rotor yaw angle. The maximal and minimal hoisting forces in three-dimensional coordinates are found and the corresponding pitch angle, azimuth angle and yaw angle are obtained. The change of the hoisting forces on wind turbine blades is analyzed. Suggestions are given to decrease the hoisting forces of the blade in open wind environment.


2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 681-691 ◽  
Author(s):  
Yan Li ◽  
Shaolong Wang ◽  
Ce Sun ◽  
Xian Yi ◽  
Wenfeng Guo ◽  
...  

For researching on the rules of icing distribution on rotating blade of horizontal axis wind turbine, a Quasi-3-D method is proposed to research on icing on rotating blades of horizontal axis wind turbine by numerical simulation. A 2-D and 3-D method of evaluating the irregular shape of ice has been established. The model of rotating blade from a 1.5 MW horizontal axis wind turbine is used to simulate the process and shape of icing on blade. The simulation is carried out under the conditions with four important parameters including ambient temperature, liquid water content, medium volume drop diameter, and icing time. The results reveal that icing mainly happens on 50% ~ 70% of the blade surface along wingspan from tip to root of blade. There are two kinds of icing shapes including horn shape icing and streamline shape icing. The study can provide theoretical basis and numerical reference to development of anti and deicing strategy for wind turbine blades.


PAMM ◽  
2004 ◽  
Vol 4 (1) ◽  
pp. 432-433 ◽  
Author(s):  
Horia Dumitrescu ◽  
Vladimir Cardos

2017 ◽  
Vol 11 (12) ◽  
pp. 118 ◽  
Author(s):  
Sutrisno . ◽  
Deendarlianto . ◽  
Tri Agung Rochmat ◽  
Indarto . ◽  
Setyawan Bekti Wibowo ◽  
...  

In this paper, the method to analyze of vortex dynamics simulation of 3-D (three dimensional) backward wind turbine blades is introduced, consisted of flow visualization part and detailed measurement part. With this method, one could explain visually and by calculation the role of 3-D flow vortex mechanism patterns on 3-D backward wind turbine blade, the interchange between kinetic and potential energies, the utilization of very strong vortex, which could lose energy, generate lift, and produce tangential mechanical power. The method could be elucidated by analyzing the appearance of rolled-up vortex effect on the 3-D backward wind turbine blades. A sharp pointed backward blade, generally has a weak tip vortex, may generate a second weak vortex center, and appears due to the rolled-up vortex effect, which is quite difficult to identify. The weakness of tip vortex makes the sharp pointed blade more efficient to exchange energy. Blunt backward turbine blades generally have a strong vortex center, a tip vortex; which in the form of a vortex core. Due to the rolled-up vortex effect, it could generate a second weak vortex center that is clearly visible. 


Sign in / Sign up

Export Citation Format

Share Document