drop diameter
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Vol 2057 (1) ◽  
pp. 012034
Author(s):  
A I Fedyushkin ◽  
A N Rozhkov ◽  
A O Rudenko

Abstract The collision of water drops with a thin cylinder is studied. The droplet flight trajectory and the cylinder axis are mutually perpendicular. In the experiments, the drop diameter is 3 mm, and the diameter of horizontal stainless-steel cylinders is 0.4 and 0.8 mm. The drops are formed by a liquid slowly pumped through a vertical stainless-steel capillary with an outer diameter of 0.8 mm, from which droplets are periodically separated under the action of gravity. The droplet velocity before collision is defined by the distance between the capillary cut and the target (cylinder); in experiments, this distance is approximately 5, 10, and 20 mm. The drop velocities before the impact are estimated in the range of 0.2–0.5 m/s. The collision process is monitored by high-speed video recording methods with a frame rate of 240 and 960 Hz. The test liquids are water. Experiments and numerical simulation show that, depending on the drop impact height (droplets velocity) different scenarios of a drop collision with a thin cylinder are possible: a short-term recoil of a drop from an obstacle, a drop flowing around a cylindrical obstacle while maintaining the continuity of the drop, the breakup of a drop into two secondary drops, one of which can continue flight and the other one is captured by the cylinder, or both secondary droplets continue to fly, and the drop can be also captured by the cylinder, until the impact of the next drop(s) forces the accumulated drop to detach from the cylinder. Numerical modeling satisfactorily reproduces the phenomena observed in the experiment.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012083
Author(s):  
V G Batalov ◽  
R A Stepanov ◽  
A U Vasilev

Abstract This paper presents the results of the laboratory and numerical experiments performed to measure the sizes of transparent liquid droplets sprayed in air. The results of the laboratory experiments were mainly obtained using the Glare Point Technique (GPT) which gave information about the droplet size and the brightness of the light reflected by drops. The relationship between the brightness of the light reflected from the surface of droplets and their sizes was analyzed. Theoretically, the brightness of light scattered by a single spherical drop is proportional to the drop surface area and, accordingly, to the square of the drop diameter. It has been observed experimentally and verified numerically that the theoretical dependence obtained is relevant only for the brightest droplets because of nonuniform illumination. The results of the numerical experiments with a random sample of drops indicated the dependence of the total brightness of reflected light on the effective droplet size. It is shown that, for a fixed total volume, the total brightness of light reflected by drops is proportional to the droplet Sauter mean diameter.


2021 ◽  
pp. 2141001
Author(s):  
Fanli Liu ◽  
Moran Wang

Transport mechanisms of small droplets on walls in micropores become significant for applications in energy, resource and biomedical engineering, however, a suitable numerical tool remains challenging. Macroscopic approach is ideal both in computing cost and simplicity but its applicability is doubted for nanoscale droplet, yet no clear evaluation on when exactly does it become invalid has been made. This work evaluates the applicability of macroscopic approach for the displacing process of droplet in a micropore and investigates relevant size effects, by comparing the simulation results of multiscale modeling and macroscopic method. Three types of size effects affecting the displacement results are identified: Laplace pressure, low interfacial density, and breakdown of macroscopic description. For the system studied, the Laplace pressure dominates for relatively big droplet, then low density region becomes significant for drop diameter smaller than 18 times molecule diameter, and finally macroscopic description gradually fails for drop diameter smaller than 13 times molecule diameter. We further investigate the influences of system scale and fluid type on these size effects and discuss the relative importance of each size effect under different conditions. Results indicate that traditional macroscopic approach may be invalid even when continuum assumption still holds due to other size effects, and corrections for those effects can be made to extend the applicability of macroscopic method.


Author(s):  
Sarah Tessendorf ◽  
Allyson Rugg ◽  
Alexei Korolev ◽  
Ivan Heckman ◽  
Courtney Weeks ◽  
...  

AbstractSupercooled large drop (SLD) icing poses a unique hazard for aircraft and has resulted in new regulations regarding aircraft certification to fly in regions of known or forecast SLD icing conditions. The new regulations define two SLD icing categories based upon the maximum supercooled liquid water drop diameter (Dmax): freezing drizzle (100–500 μm) and freezing rain (> 500 μm). Recent upgrades to U.S. operational numerical weather prediction models lay a foundation to provide more relevant aircraft icing guidance including the potential to predict explicit drop size. The primary focus of this paper is to evaluate a proposed method for estimating the maximum drop size from model forecast data to differentiate freezing drizzle from freezing rain conditions. Using in-situ cloud microphysical measurements collected in icing conditions during two field campaigns between January and March 2017, this study shows that the High-Resolution Rapid Refresh model is capable of distinguishing SLD icing categories of freezing drizzle and freezing rain using a Dmax extracted from the rain category of the microphysics output. It is shown that the extracted Dmax from the model correctly predicted the observed SLD icing category as much as 99% of the time when the HRRR accurately forecast SLD conditions; however, performance varied by the method to define Dmax and by the field campaign dataset used for verification.


2021 ◽  
pp. 14-14
Author(s):  
Milan Sovilj ◽  
Momcilo Spasojevic

This work provides a review of hydrodynamic characteristics and mass transfer in the K?hni extraction columns. The experiments, as reported in the literature, were performed in the presence and absence of mass transfer. The results showed that the Sauter mean drop diameter was strongly affected by the rotor speed and interfacial tension, whereas the effects of the dispersed and continuous velocities were negligible. Empirical correlations for the Sauter mean drop diameter, taken from the literature, were discussed. It was experimentally determined that the dispersed-phase holdup depended to a great extent on the rotor speed, mass transfer direction between the phases, physical characteristics of fluids in the liquid-liquid system, and the dispersed-phase flowrate whereas it increased with the increase in mixing in the two-phase system and the ratio of phase flowrates. On the other hand, it has been shown that the mass transfer rate increases with increasing the level of back mixing. It was found that the mass transfer coefficient depends on the rotor speed and the direction of mass transfer between the phases. At the same time, it has been shown that the mass transfer coefficient depends relatively little on the phase flowrates. An empirical correlation was proposed for prediction of the overall mass transfer coefficient based on dimensionless numbers. Also, novel empirical correlations for prediction of the Sherwood number in the continuous phase were presented based on the dispersed-phase holdup, Reynolds number, and mass transfer direction between the phases. Empirical correlations based on dimensionless numbers can be considered as a useful tool for the design of the K?hni columns.


Author(s):  
Sung–Ho Suh ◽  
Hyeon–Joon Kim ◽  
Dong–In Lee ◽  
Tae–Hoon Kim

AbstractThis study analyzed the regional characteristics of raindrop size distribution (DSD) in the southern coastal area of South Korea. Data from March 2016 to February 2017 were recorded by four PARSIVEL disdrometers installed at intervals of ~20 km from the coastline to inland. Within 20 km from the coastline, multiple local maxima in the probability density function (PDF) were observed at Dm (mass-weighted drop diameter) = 0.6 mm and logNw (normalized intercept parameter) = 5.2 for stratiform rainfall, but these features were not observed more than 20 km from the coastline. Based on mean Dm–logNw values, stratiform rainfall clearly differed between coastal and inland areas. For convective precipitation, there was a linear relationship between Dm and Nw with the distance from the coastline. PDF analyses of diurnal variation in DSD confirmed that in spring and autumn the multiple local maxima appear in the daytime. The multiple local maxima in Dm (logNw) values were lower (higher) at nighttime (NT) than DT in the spring and summer season. These features were highly dependent on the prevailing wind. There was a pattern of increasing A and decreasing b in the radar reflectivity–rainfall rate (Z–R) relationship (Z = ARb) with distance from the coastline, and these features were more pronounced in convective precipitation. These diurnal variabilities were regular in stratiform rainfall, and there were large differences in quantitative precipitation estimation depending on the land–sea breeze in the coastal area.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3320
Author(s):  
Frank Agyen Dwomoh ◽  
Shouqi Yuan ◽  
Hong Li ◽  
Xingye Zhu ◽  
Junping Liu ◽  
...  

The fluidic sprinkler, a relatively new type of rotating sprinkler, has been the subject of quite a lot of research about its structural parameters, hydraulic characteristics, and water distribution profile, albeit under indoor conditions. The fluidic sprinkler’s performance in terms of water distribution profile and droplet size distribution pattern in wind has seen little investigation. To obtain information about its droplet size distribution in wind, the Thiess Clima Laser Precipitation Monitor was employed. Drop diameter, drop velocity, and the number of drops at varying distances from the fluidic sprinkler were measured in both wind and no wind at three operating pressures of 250, 300, and 350 kPa. The logistic model was adopted to fit a relationship between the drop diameter and the cumulative numeric frequency (CNF) and the cumulative volumetric frequency (CVF) values resulting in very high correlation coefficient (R2) values of above 0.99 for all conditions. At 250, 300, and 350 kPa, drops traveled 0.6, 1.0, and 1.3 m, respectively, farther in wind than in no wind along the direction of throw. Drops exhibited a spectrum of velocities and diameters at a given radial distance from the sprinkler. Up to two-thirds of the radius of throw, the proportion of drops with diameters ranging from 0.125 mm to 1.00 mm were above 80% at 300 and 350 kPa.


DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 126-135
Author(s):  
Jorge Enrique Giraldo Barrada ◽  
Juan Camilo García Viana ◽  
John Edison Morales Galeano ◽  
Emanuel Valencia Henáo

Metal transfer modes (MTMs) maps were constructed for GMAW process using ER4130 and 98%Ar-2%O2 shielding gas. There is no available MTMs maps for this filler metal which is used to obtain matching strength in welds of AISI 4130/4140 steels. These maps serve as tools to establish the MTM given a welding current and voltage, which is useful when an engineer is trying to qualify welding procedures according to construction codes. The maps were built analyzing current and voltage signals recorded at 5000 samples/second during bead-on-plate welds. The main advantage of this methodology is its simplicity of instrumentation without expensive cameras, but has low resolution and it is difficult to identify finer characteristics of MTMs, such as subgroups (repelled globular, streaming, rotational spray), drop diameter, explosive transfer, etc. Several MTMs were identified in the signal analysis and grouped into natural MTMs (short circuit, globular and spray) and interchangeable modes (short-circuit-globular, globular-spray and short-circuit-globular-spray).


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4924 ◽  
Author(s):  
Denise Molinnus ◽  
Stefan Beging ◽  
Carsten Lowis ◽  
Michael J. Schöning

Multi-enzyme immobilization onto a capacitive field-effect biosensor by nano-spotting technique is presented. The nano-spotting technique allows to immobilize different enzymes simultaneously on the sensor surface with high spatial resolution without additional photolithographical patterning. The amount of applied enzymatic cocktail on the sensor surface can be tailored. Capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors with Ta2O5 as pH-sensitive transducer layer have been chosen to immobilize the three different (pL droplets) enzymes penicillinase, urease, and glucose oxidase. Nano-spotting immobilization is compared to conventional drop-coating method by defining different geometrical layouts on the sensor surface (fully, half-, and quarter-spotted). The drop diameter is varying between 84 µm and 102 µm, depending on the number of applied drops (1 to 4) per spot. For multi-analyte detection, penicillinase and urease are simultaneously nano-spotted on the EIS sensor. Sensor characterization was performed by C/V (capacitance/voltage) and ConCap (constant capacitance) measurements. Average penicillin, glucose, and urea sensitivities for the spotted enzymes were 81.7 mV/dec, 40.5 mV/dec, and 68.9 mV/dec, respectively.


Sign in / Sign up

Export Citation Format

Share Document