NN approach to state-feedback control of high-order non-linear time-delay systems with time-varying control coefficient

2016 ◽  
Vol 40 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Min Huifang ◽  
Duan Na

This paper considers the adaptive state-feedback control problem for a class of high-order non-linear systems with unknown control coefficient and time delays. By applying the neural network approximation method and the Nussbaum function approach, the restrictions on non-linear functions and the conditions on the time-varying control coefficient are largely relaxed. In addition, an adaptive neural network state-feedback controller with only one adaptive parameter is successfully constructed by introducing proper Lyapunov–Krasovskii functionals and using the backstepping technique. The proposed scheme guarantees the closed-loop system to be semi-globally uniformly ultimately bounded. Finally, a simulation example demonstrates the effectiveness of the controller.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Huifang Min ◽  
Na Duan

Nussbaum-type gain function and neural network (NN) approximation approaches are extended to investigate the adaptive state-feedback stabilization problem for a class of stochastic high-order nonlinear time-delay systems. The distinct features of this paper are listed as follows. Firstly, the power order condition is completely removed; the restrictions on system nonlinearities and time-varying control direction are greatly weakened. Then, based on Lyapunov-Krasovskii function and dynamic surface control technique, an adaptive NN controller is constructed to render the closed-loop system semiglobally uniformly ultimately bounded (SGUUB). Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document