projection approach
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 57)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Vol 11 (21) ◽  
pp. 9819
Author(s):  
Ivan V. Bogachev

Determination of prestress fields in structures is of the utmost importance, since they have a significant impact on operational characteristics, and their level and distribution must be strictly controlled. In this paper, we present modeling of bending vibrations of solid and annular round inhomogeneous prestressed plates within the framework of the Timoshenko hypotheses. New inverse problems of prestress identification in plates are studied on the basis of the acoustic response subjected to some probing load. To solve direct problems on calculating oscillations and amplitude-frequency characteristics, a computational Galerkin-method-based scheme has been developed. In order to treat the inverse problems, we use a special projection approach based on the constructed weak problems statements, which makes it possible to determine the desired characteristics in the given classes of functions. The developed techniques for solving direct problems are implemented in the form of software packages realized via Maple. For both solid and annular plates, we estimate the sensitivity of the amplitude-frequency characteristics the values of which are used as the additional data in the inverse problems to a change in the prestress level; we conclude that the most favorable frequency range should be selected in the resonance vicinity. We have conducted a series of computational tests on reconstructing the plate’s prestresses of various levels and distribution patterns (decreasing, increasing, sign-changing laws). The results of computational tests revealed that the technique developed allows for the determination of the prestresses with a low error for two cases: when the cause of prestress formation and its type are known and when arbitrary prestress changing laws are considered.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 296
Author(s):  
Matteo Zancanaro ◽  
Markus Mrosek ◽  
Giovanni Stabile ◽  
Carsten Othmer ◽  
Gianluigi Rozza

Geometrically parametrized partial differential equations are currently widely used in many different fields, such as shape optimization processes or patient-specific surgery studies. The focus of this work is some advances on this topic, capable of increasing the accuracy with respect to previous approaches while relying on a high cost–benefit ratio performance. The main scope of this paper is the introduction of a new technique combining a classical Galerkin-projection approach together with a data-driven method to obtain a versatile and accurate algorithm for the resolution of geometrically parametrized incompressible turbulent Navier–Stokes problems. The effectiveness of this procedure is demonstrated on two different test cases: a classical academic back step problem and a shape deformation Ahmed body application. The results provide insight into details about the properties of the architecture we developed while exposing possible future perspectives for this work.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
David J. Lawrence ◽  
Amber N. Runyon ◽  
John E. Gross ◽  
Gregor W. Schuurman ◽  
Brian W. Miller

AbstractScenario planning has emerged as a widely used planning process for resource management in situations of consequential, irreducible uncertainty. Because it explicitly incorporates uncertainty, scenario planning is regularly employed in climate change adaptation. An early and essential step in developing scenarios is identifying “climate futures”—descriptions of the physical attributes of plausible future climates that could occur at a specific place and time. Divergent climate futures that describe the broadest possible range of plausible conditions support information needs of decision makers, including understanding the spectrum of potential resource responses to climate change, developing strategies robust to that range, avoiding highly consequential surprises, and averting maladaptation. Here, we discuss three approaches for generating climate futures: a Representative Concentration Pathway (RCP)-ensemble, a quadrant-average, and an individual-projection approach. All are designed to capture relevant uncertainty, but they differ in utility for different applications, complexity, and effort required to implement. Using an application from Big Bend National Park as an example of numerous similar efforts to develop climate futures for National Park Service applications over the past decade, we compare these approaches, focusing on their ability to capture among-projection divergence during early-, mid-, and late-twenty-first century periods to align with near-, mid-, and long-term planning efforts. The quadrant-average approach and especially the individual-projection approach captured a broader range of plausible future conditions than the RCP-ensemble approach, particularly in the near term. Therefore, the individual-projection approach supports decision makers seeking to understand the broadest potential characterization of future conditions. We discuss tradeoffs associated with different climate future approaches and highlight suitable applications.


Author(s):  
Luigi Procopio ◽  
Edoardo Barba ◽  
Federico Martelli ◽  
Roberto Navigli

Word Sense Disambiguation (WSD), i.e., the task of assigning senses to words in context, has seen a surge of interest with the advent of neural models and a considerable increase in performance up to 80% F1 in English. However, when considering other languages, the availability of training data is limited, which hampers scaling WSD to many languages. To address this issue, we put forward MultiMirror, a sense projection approach for multilingual WSD based on a novel neural discriminative model for word alignment: given as input a pair of parallel sentences, our model -- trained with a low number of instances -- is capable of jointly aligning, at the same time, all source and target tokens with each other, surpassing its competitors across several language combinations. We demonstrate that projecting senses from English by leveraging the alignments produced by our model leads a simple mBERT-powered classifier to achieve a new state of the art on established WSD datasets in French, German, Italian, Spanish and Japanese. We release our software and all our datasets at https://github.com/SapienzaNLP/multimirror.


2021 ◽  
Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu ◽  
Kunio Hasegawa

Abstract When flaws are detected in pressure retaining components, assessments have to be done in order to demonstrate the fitness-for-service (FFS) of the component for continued operation. This FFS demonstration is performed in accordance with FFS Codes providing flaw assessment procedure and acceptance standards. The first step of the flaw assessment is the flaw characterization which aims at determining the flaw geometry to be used for the analyses. This key step is done according to flaw characterization rules provided in the FFS Codes and hence appears as essential for the rest of the assessment. According to the flaw characterization rules of ASME B&PV Code Section XI, a nonplanar flaw (i.e., oriented in two or more intersecting inclined planes, curvilinear geometry, or combinations of nonplanar geometry) shall be resolved into two planar flaws by projection of the flaw area into planes normal to the maximum principal stresses. This approach allows to simplify the flaw assessment but should remain conservative. Therefore, the conservatisms due to the simplified projection approach for nonplanar flaws are investigated in this paper. Current computational tools have been clearly improved so that the modelling of nonplanar flaws does not present any significant difficulty. In this frame, this paper compares the stress intensity factors of projected nonplanar flaws and the mixed mode stress intensity factor of actual nonplanar flaws. This is carried out for multiple flaw sizes, flaw shapes, flaw orientations and different load cases. The final scope is to quantify how the flaw projection into planes normal to the maximum principal stresses is conservative and how this conservatism could be improved, if need be.


Sign in / Sign up

Export Citation Format

Share Document