Adaptive decentralized fault-tolerant tracking control of a class of uncertain large-scale nonlinear systems with actuator faults

2016 ◽  
Vol 40 (3) ◽  
pp. 831-842 ◽  
Author(s):  
Yang Yang ◽  
Dong Yue

We are concerned with the fault-tolerant tracking control affair for a class of large-scale multi-input and multi-output (MIMO) nonlinear systems suffering from actuator failures. Taking advantage of the mean-value theory and the implicit function theorem, the non-affine subsystems are transformed into affine forms. Neural networks (NNs) are utilized to approximate unknown virtual control signals, and then an adaptive NN-based decentralized tracking control strategy is exploited recursively by combining backstepping methods as well as the dynamic surface control (DSC) methodology. In theory, the stability of the resulting whole system is rigorously analysed, where it is proven that all signals remain uniformly ultimately bounded (UUB) and the designed strategy can guarantee the convergence of tracking errors via a suitable choice of control parameters. Finally, two simulation examples, both practical and numerical examples, are illustrated to verify the feasibility of the theoretical claims.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenghui Yang ◽  
Wentao He ◽  
Yushan He ◽  
Yaen Xie ◽  
Jun Li ◽  
...  

This paper provides a solution for the trajectory tracking control of a hypersonic flight vehicle (HFV), which is encountered performance constraints, actuator faults, external disturbances, and system uncertainties. For the altitude and velocity control subsystems, the backstepping-based dynamic surface control (DSC) strategy is constructed to guarantee the predefined constraint of tracking errors. The introduction of first-order low-pass filters effectively remedies the problem of “complexity explosion” existing in high-order backstepping design. Simultaneously, radial basis function neural networks (RBFNNs) are adopted for approximating the unavailable dynamics, in which the minimum learning parameter (MLP) algorithm brilliantly alleviates the excessive occupation of the computational resource. Specially, in consideration of the unknown actuator failures, the adaptive signals are designed to enhance the reliability of the closed-loop system. Finally, according to rigorous theoretical analysis and simulation experiment, the stability of the proposed controller is verified, and its superiority is exhibited intuitively.


2018 ◽  
Vol 41 (4) ◽  
pp. 975-989 ◽  
Author(s):  
Ziquan Yu ◽  
Youmin Zhang ◽  
Yaohong Qu

In this paper, a prescribed performance-based distributed neural adaptive fault-tolerant cooperative control (FTCC) scheme is proposed for multiple unmanned aerial vehicles (multi-UAVs). A distributed sliding-mode observer (SMO) technique is first utilized to estimate the leader UAV’s reference. Then, by transforming the tracking errors of follower UAVs with respect to the estimated references into a new set, a distributed neural adaptive FTCC protocol is developed based on the combination of dynamic surface control (DSC) and minimal learning parameters of neural network (MLPNN). Moreover, auxiliary dynamic systems are exploited to deal with input saturation. Furthermore, the proposed control scheme can guarantee that all signals of the closed-loop system are bounded, and tracking errors of follower UAVs with respect to the estimated references are confined within the prescribed bounds. Finally, comparative simulation results are presented to illustrate the effectiveness of the proposed distributed neural adaptive FTCC scheme.


Sign in / Sign up

Export Citation Format

Share Document