Finite-time stability control of an electric vehicle under tyre blowout

2018 ◽  
Vol 41 (5) ◽  
pp. 1395-1404 ◽  
Author(s):  
Qinghua Meng ◽  
Chunjiang Qian ◽  
Zong-Yao Sun

In this paper, the authors consider the problem of tyre blowout control via output feedback for an electric vehicle (EV) driven by four in-wheel motors to reduce fatal damage. First, an EV dynamic model in the case of a tyre blowout is established. The model considers the unmeasurable state, unknown added front wheel steering angle generated by a tyre blowout and uncertain external disturbances. Second, to address the difficulties in estimating the unmeasurable state, unknown parameters and disturbances for the EV, a finite-time observer is introduced. Then, by introducing a coordinate transformation, the state-space model of an EV with tyre blowout is converted into a simple form for which a state feedback control law is constructed by adding a power integrator method. Combining the finite-time observer with the finite-time control law, an output feedback controller is designed to stabilize the EV when a tyre bursts. A torque allocation method is also given to operate every wheel except the burst tyre to stabilize and stop the EV. Finally, computer simulations are given to validate the proposed finite-time output feedback controller for the EV tyre blowout control.

2013 ◽  
Vol 658 ◽  
pp. 602-608 ◽  
Author(s):  
Cheng Lin ◽  
Chun Lei Peng

This paper presents the design of mixed H∞/H2Output Feedback Controller for Independent Drive Electric Vehicle Stability Control. It generates yaw moment by applying driving intervention at front Independent driving wheels according to the vehicle states. The performance of the proposed controller is evaluated through a series of simulations under different velocity and different mass. The simulation results show that the controller can help vehicle against a certain range of uncertainty (speeds and loads) and get excellent robust performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Cong-Trang Nguyen ◽  
Yao-Wen Tsai

This study proposes a novel variable structure control (VSC) for the mismatched uncertain systems with unknown time-varying delay. The novel VSC includes the finite-time convergence sliding mode, invariance property, asymptotic stability, and measured output only. A necessary and sufficient condition guaranteeing the existence of sliding surface is given. A novel lemma is established to deal with the control design problem for a wider class of time-delay systems. A suitable reduced-order observer (ROO) is constructed to estimate unmeasured state variables of the systems. A novel finite-time output feedback controller (FTOFC) is investigated, which is based on the ROO tool and the Moore-Penrose inverse technique. Moreover, with the help of this lemma and the proposed FTOFC, restrictions on most existing works are also eliminated. In addition, an asymptotic stability analysis is implemented by means of the feasibility of the linear matrix inequalities (LMIs) and given desirable sliding mode dynamics. Finally, a MATLAB simulation result on a numerical example is performed to show the effectiveness and advantage of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Ling Hou ◽  
Dongyan Chen

This paper investigates the stochastic finite-time H∞ boundedness problem for nonlinear discrete time networked systems with randomly occurring multi-distributed delays and missing measurements. The randomly occurring multi-distributed delays and missing measurements are described as Bernoulli distributed white noise sequence. The goal of this paper is to design a full-order output-feedback controller to guarantee that the corresponding closed-loop system is stochastic finite-time H∞ bounded and with desired H∞ performance. By constructing a new Lyapunov-Krasovskii functional, sufficient conditions for the existence of output-feedback are established. The desired full-order output-feedback controller is designed in terms of the solution to linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the validity of the designed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Yong-Sheng Hao ◽  
Zhi-Gang Su ◽  
Xiangyu Wang

The position tracking control problem of a hydraulic manipulator system is investigated. By utilizing homogeneity theory, a finite-time output feedback controller is designed. Firstly, a finite-time state feedback controller is developed based on homogeneity theory. Secondly, a nonlinear state observer is designed to estimate the manipulator’s velocity. A rigorous analysis process is presented to demonstrate the observer’s finite-time stability. Finally, the corresponding output feedback tracking controller is derived, which stabilizes the tracking error system in finite time. Simulations demonstrate the effectiveness of the designed finite-time output feedback controller.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 456 ◽  
Author(s):  
Jang-Hyun Park ◽  
Tae-Sik Park ◽  
Seong-Hwan Kim

A novel differentiator-based approximation-free output-feedback controller for uncertain nonautonomous nonlinear pure-feedback systems is proposed. Using high-order sliding mode observer, which is a finite-time exact differentiator, the time-derivatives of the signal generated using tracking error and filtered input are directly estimated. As a result, the proposed non-backstepping control law and stability analysis are drastically simple. The tracking error vector is guaranteed to be exponentially stable in finite time regardless of the nonautonomous property in the considered system. It does not require neural networks or fuzzy logic systems, which are typically adopted to capture unstructured uncertainties intrinsic in the controlled system. As far as the authors know, there are no research results on the output-feedback controller for the uncertain nonautonomous pure-feedback nonlinear systems. The results of the simulation show clearly the performance and compactness of the control scheme proposed.


Sign in / Sign up

Export Citation Format

Share Document