Fusion of inverse optimal and model predictive control strategies

2019 ◽  
Vol 42 (6) ◽  
pp. 1122-1134
Author(s):  
Lütfi Ulusoy ◽  
Müjde Güzelkaya ◽  
İbrahim Eksin

In this study, model predictive control (MPC) and inverse optimal control (IOC) approaches are merged with each other and a new control strategy is evolved. The key feature in this strategy is to solve the IOC problem repeatedly for each receding horizon of the model predictive control approach. From another perspective, MPC structure is inserted to IOC problem and thus, IOC problem is solved repeatedly using different initial conditions at the beginning of each receding horizon. In the solution phase of IOC, the parameters of the candidate control Lyapunov function matrix are estimated using the global evolutionary Big Bang-Big Crunch (BB-BC) optimization algorithm in an on-line manner. Thus, the proposed control structure solves the optimal control problem in classical MPC approach to the search of an appropriate candidate control Lyapunov function matrix for each control horizon. The comparison of the proposed method with the other related control methods are performed on the ball and beam system via simulations and real-time applications.

Author(s):  
Nicholas A. Kirsch ◽  
Naji A. Alibeji ◽  
Nitin Sharma

One of the major limitations of functional electrical stimulation (FES) is the rapid onset of muscle fatigue. Minimizing stimulation is the key to decreasing the adverse effects of muscle fatigue caused by FES. Optimal control can be used to compute the minimum amount of stimulation necessary to produce a desired motion. In this paper, a gradient projection-based model predictive controller is used for an approximate optimal control of a knee extension neuroprosthesis. A control Lyapunov function is used as a terminal cost to ensure stability of the model predictive control.


Author(s):  
Mohamed M. Alhneaish ◽  
Mohamed L. Shaltout ◽  
Sayed M. Metwalli

An economic model predictive control framework is presented in this study for an integrated wind turbine and flywheel energy storage system. The control objective is to smooth wind power output and mitigate tower fatigue load. The optimal control problem within the model predictive control framework has been formulated as a convex optimal control problem with linear dynamics and convex constraints that can be solved globally. The performance of the proposed control algorithm is compared to that of a standard wind turbine controller. The effect of the proposed control actions on the fatigue loads acting on the tower and blades is studied. The simulation results, with various wind scenarios, showed the ability of the proposed control algorithm to achieve the aforementioned objectives in terms of smoothing output power and mitigating tower fatigue load at the cost of a minimal reduction of the wind energy harvested.


Author(s):  
Mario Zanon ◽  
Andrea Boccia ◽  
Vryan Gil S. Palma ◽  
Sonja Parenti ◽  
Ilaria Xausa

2018 ◽  
Vol 9 (4) ◽  
pp. 45 ◽  
Author(s):  
Nicolas Sockeel ◽  
Jian Shi ◽  
Masood Shahverdi ◽  
Michael Mazzola

Developing an efficient online predictive modeling system (PMS) is a major issue in the field of electrified vehicles as it can help reduce fuel consumption, greenhouse gasses (GHG) emission, but also the aging of power-train components, such as the battery. For this manuscript, a model predictive control (MPC) has been considered as PMS. This control design has been defined as an optimization problem that uses the projected system behaviors over a finite prediction horizon to determine the optimal control solution for the current time instant. In this manuscript, the MPC controller intents to diminish simultaneously the battery aging and the equivalent fuel consumption. The main contribution of this manuscript is to evaluate numerically the impacts of the vehicle battery model on the MPC optimal control solution when the plug hybrid electric vehicle (PHEV) is in the battery charge sustaining mode. Results show that the higher fidelity model improves the capability of accurately predicting the battery aging.


Sign in / Sign up

Export Citation Format

Share Document