Discrete indirect adaptive sliding mode control for uncertain Hammerstein nonlinear systems

Author(s):  
Aicha Znidi ◽  
Khadija Dehri ◽  
Ahmed Said Nouri

The robustness issue of uncertain nonlinear systems’ control has attracted the attention of numerous researchers. In this paper, we propose three techniques to deal with the uncertain Hammerstein nonlinear model. First, a discrete sliding mode control (SMC) is developed, which is based on converting the original nonlinear system into a linearized one in the vicinity of the operating region using Taylor series expansion. However, the presence of relatively high nonlinearities and parameter variations leads to the deterioration of the desired performances. In order to overcome these problems and to improve the performance of classical SMC, we propose two solutions. The first one is based on the synthesis of a discrete SMC, taking into account the presence of nonlinearity. The second solution is a new discrete adaptive SMC for input–output Hammerstein model. In order to show the effectiveness of the proposed controllers, a detailed robustness analysis is clearly developed. Simulation examples are reported at the end of the paper.

2019 ◽  
Vol 26 (7-8) ◽  
pp. 399-412
Author(s):  
Wajdi Saad ◽  
Anis Sellami ◽  
Germain Garcia

In this paper, the problem of adaptive sliding mode control for varied one-sided Lipschitz nonlinear systems with uncertainties is investigated. In contrast to existing sliding mode control design methods, the considered models, in the current study, are affected by nonlinear control inputs, one-sided Lipschitz nonlinearities, unknown disturbances and parameter uncertainties. At first, to design the sliding surface, a specific switching function is defined. The corresponding nonlinear equivalent control is extracted and the resulting sliding mode dynamic is given. Novel synthesis conditions of asymptotic stability are derived in terms of linear matrix inequalities. Thereafter, to ensure the reachability of system states and the occurrence of the sliding mode, the sliding mode controller is designed. Any knowledge of the upper bound on the perturbation is not required and an adaptation law is proposed. At last, two illustrative examples are introduced.


Sign in / Sign up

Export Citation Format

Share Document