scholarly journals Production performance analysis for horizontal wells in composite coal bed methane reservoir

2017 ◽  
Vol 35 (2) ◽  
pp. 194-217 ◽  
Author(s):  
Zhang Wei ◽  
Jiang Ruizhong ◽  
Xu Jianchun ◽  
Gao Yihua ◽  
Yang Yibo

In this paper, the mathematical model of production performance analysis for horizontal wells in composite coal bed methane reservoir is introduced. In this model, two regions with different formation parameters are distinguished, and multiple mechanisms are considered including desorption, diffusion, and viscous flow. Then the solution of horizontal well performance analysis model is obtained by using point source function method, Laplace transform, and Stehfest algorithm comprehensively. The solution of the proposed model is verified with previous work thoroughly. The pressure transient analysis for horizontal well when producing at a constant rate is obtained and discussed. At last, different flow regimes are divided based on pressure transient analysis curves. They are early wellbore storage period, skin factor period, first radial flow regime, transition regime, second radial flow regime, transfer regime, and late pseudo-radial flow regime. The effects of related parameters such as storativity ratio, transfer coefficient, adsorption coefficient, ratio of vertical permeability to horizontal permeability, skin factor, horizontal well position in vertical direction, and inner region radius are analyzed as well according to pressure transient analysis and rate transient analysis curves. The presented work in this paper can give a better understanding of coal bed methane production performance in composite reservoir.

Author(s):  
Hussein Al- Ali

This work is discussed how to differentiate between two tricky models for sand stone formation by using the pressure transient analysis PTA for three Wells which are distributed in south, middle and north of X field. In the derivative curve these two models have the same sequence of flow regime which are by hump, first radial flow regime, transition hump and then late radial flow regime. The parameter Kappa (K) played the most important key to select the type of reservoir model and differentiate between the two models in PTA. In the middle and south of the field, this parameter has a value close to one at well no. Rt-16 & Rt-18, which means that the system behaves as dual porosity. On the other hand, Kappa has a value of around (0.74) in Rt-17 to represent a double permeability system but without cross flow between two layers due to the small value of Lamda.


1996 ◽  
Author(s):  
Marcel J. Bourgeois ◽  
Jean-Luc Boutaud de la Combe ◽  
Renaud M. Deboaisne

Sign in / Sign up

Export Citation Format

Share Document