scholarly journals Standard Programming of Retrograde Electrode Insertion via Middle-Turn Cochleostomy in Labyrinthitis Ossificans

2020 ◽  
pp. 014556132097486
Author(s):  
Mounika Reddy Y ◽  
Anjali Lepcha ◽  
Ann Mary Augustine ◽  
Ajay Philip ◽  
Philip Thomas

Successful cochlear implantation in the setting of labyrinthitis ossificans is challenging. Various surgical techniques are described to circumvent the region of ossification and retrograde insertion of the electrode array is one such option. While reverse programming is often recommended in the case of retrograde electrode insertion, we present our experience of retrograde electrode insertion for labyrinthitis ossificans, where standard programming was adopted due to patient preference and provided satisfactory outcomes.

2007 ◽  
Vol 122 (3) ◽  
pp. 246-252 ◽  
Author(s):  
S Berrettini ◽  
F Forli ◽  
S Passetti

AbstractThe preservation of residual hearing is becoming a high priority in cochlear implant surgery. It allows better speech understanding and ensures long-lasting and stable performance; it also allows the possibility, in selected cases, of combining electro-acoustic stimulation in the same ear.We present the results of a retrospective study of the conservation of residual hearing in three different groups of patients who had undergone cochlear implantation using three different cochlear implant electrode arrays, combined with three different surgical techniques for the cochleostomy. The study aimed to evaluate which approach allowed greater preservation of residual hearing.The best residual hearing preservation results (i.e. preservation in 81.8 per cent of patients) were achieved with the Contour Advance electrode array, using the Advance Off-Stylet technique and performing a modified anterior inferior cochleostomy; this combination enabled reduced trauma to the lateral wall of the cochlea during electrode insertion.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Diana Arweiler-Harbeck ◽  
Christoph Mönninghoff ◽  
Jens Greve ◽  
Thomas Hoffmann ◽  
Sophia Göricke ◽  
...  

Background. Postoperative imaging after cochlear implantation is usually performed by conventional cochlear view (X-ray) or by multislice computed tomography (MSCT). MSCT after cochlear implantation often provides multiple metal artefacts; thus, a more detailed view of the implant considering the given anatomy is desirable. A quite new method is flat panel volume computed tomography. The aim of the study was to evaluate the method’s clinical use. Material and Methods. After cochlear implantation with different implant types, flat panel CT scan (Philips Allura) was performed in 31 adult patients. Anatomical details, positioning, and resolution of the different electrode types (MedEL, Advanced Bionics, and Cochlear) were evaluated interdisciplinary (ENT/Neuroradiology). Results. In all 31 patients cochlear implant electrode array and topographical position could be distinguished exactly. Spatial resolution and the high degree of accuracy were superior to reported results of MSCT. Differentiation of cochlear scalae by identification of the osseous spiral lamina was possible in some cases. Scanning artefacts were low. Conclusion. Flat panel CT scan allows exact imaging independent of implant type. This is mandatory for detailed information on cochlear electrode position. It enables us to perform optimal auditory nerve stimulation and allows feed back on surgical quality concerning the method of electrode insertion.


2020 ◽  
pp. 019459982093474
Author(s):  
Danielle R. Trakimas ◽  
Renata M. Knoll ◽  
Melissa Castillo-Bustamante ◽  
Elliott D. Kozin ◽  
Aaron K. Remenschneider

Objective Labyrinthitis ossificans (LO) may occur following meningitis and, in cases where cochlear implantation is indicated, complicate electrode insertion. LO is critical to identify for successful cochlear implantation, and histopathology is more sensitive than imaging for identification of LO. Herein we utilize otopathologic techniques to study the timing and location of intracochlear tissue formation following meningitic labyrinthitis (ML). Study Design Retrospective review. Setting Academic institution. Methods Temporal bone specimens with a history of bacterial ML were histologically evaluated. The location and extent of intracochlear tissue formation within the scala tympani (ST) and scala vestibuli (SV) were graded, and spiral ganglion neurons were counted. Results Fifty-one temporal bones were identified: 32 with no intracochlear tissue formation, 9 with fibrosis alone, and 10 with LO. Fibrosis was identified as early as 1.5 weeks after ML, while ossification was found only in specimens that survived multiple years after ML. All LO cases showed ossification of the ST at the round window membrane (RWM) with continuous extension throughout the basal turn. Extent of SV ossification correlated with that in the ST but showed frequent isolated distal involvement of the cochlea. Spiral ganglion neuron counts were lower than those in age-matched controls. Conclusion In this human temporal bone study, we found that postmeningitic LO results in ossification at the RWM with continuous extension into the ST of the basal turn and variable involvement of the SV. Identification of a patent basal turn beyond RWM ossification of the ST should permit full electrode insertion. Level of Evidence Retrospective review.


2021 ◽  
Vol 162 (22) ◽  
pp. 878-883
Author(s):  
Ádám Perényi ◽  
Roland Nagy ◽  
Bence Horváth ◽  
Bálint Posta ◽  
Balázs Dimák ◽  
...  

Összefoglaló. Bevezetés: A cochlearis implantátum egy műtétileg behelyezett elektromos eszköz, amely az akusztikus hanghullámokat elektromos jelekké alakítja, közvetlenül a hallóideget stimulálja, így segíti a súlyos fokú hallássérüléssel vagy teljes hallásvesztéssel élők életét. Cochlearis implantációt követően a legjobb rehabilitációs eredmény elérésének technikai feltétele többek között az esetre szabott elektródaválasztás és az elektródasor teljes, kontrollált, szövődménymentes bejuttatása a scala tympaniba, miközben a cochlea belső struktúrája a lehető legkisebb mértékben sérül. A rutin intraoperatív elektrofiziológiai tesztek fontos információt adnak a készülék működőképességéről és a hallóideg stimulációjáról, azonban nem hagyatkozhatunk rájuk az elektródasor cochleán belüli helyzetének igazolásában. Mivel előfordulhat, hogy a rendelkezésre álló elektrofiziológiai vizsgálatok eredménye megfelelő, és mégis rendellenes helyzetbe kerül az elektróda, az arany standardot a képalkotó vizsgálatok jelentik. Módszer: Közleményünkben egy modern, hibrid műtő által nyújtott technológiai háttér új alkalmazási területét mutatjuk be. Szimultán kétoldali cochlearis implantációt végeztünk Cochlear Nucleus Slim Modiolar típusú perimodiolaris elektródasorral, a belső fül fejlődési rendellenességével rendelkező betegen. Az intraoperatív képalkotást Siemens Artis pheno C-karos robot digitális szubtrakciós angiográfiás rendszer biztosította valós idejű átvilágító és volumentomográfiás funkcióval. Eredmények: Az intraoperatív képalkotás által dinamikusan követhető az elektródasor bevezetésének folyamata, ellenőrizhető az elektródasor statikus helyzete, így kiváltható a rutinnak számító posztoperatív képalkotó vizsgálat. A rendellenes helyzetbe kerülő elektródasor pozíciója egy ülésben korrigálható, az újból bevezethető, így elkerülhető az újabb altatással járó, bizonytalan kimenetelű revíziós műtét. Következtetés: A hibrid műtő jól kontrollált, minimálisan invazív eljárások elvégzését biztosítja. Különösen a hallószerv fejlődési rendellenessége vagy egyéb, az elektródának a cochleába vezetését nehezítő rendellenesség esetén javasolt a műtői képalkotó diagnosztika. Orv Hetil. 2021; 162(22): 878–883. Summary. Introduction: The cochlear implant is a surgically inserted electrical device that converts acoustic sound waves into electrical signals to stimulate the cochlear nerve, thus helps the rehabilitation of people with severe to total hearing loss. One of the most important technical conditions for achieving the best rehabilitation result after cochlear implantation is the personalized choice of electrodes. Additionally, it is vital that there is a complete, controlled, uncomplicated delivery of the electrode array to the scala tympani while minimizing damage to the inner structures of the cochlea. Routine electrophysiological tests provide important information about device functionality and auditory nerve stimulation. However, they probably do not show an abnormal position of the electrode array within the cochlea. Thus, imaging studies remain the gold standard. Method: In our paper, we present a novel application field of the modern technological background provided by a hybrid operating room. Simultaneous bilateral cochlear implantation was performed with cochlear implants with perimodiolar electrode array (Nucleus Slim Modiolar) in a patient with cochlear malformation. Intraoperative imaging was provided by a Siemens Artis pheno C-arm robot digital subtraction angiography system with real-time fluoroscopy and volume tomography function. Results: Intraoperative imaging ensures dynamic follow-up of the introduction and static determination of the position of the electrode array and replaces routine postoperative imaging. If the electrode array was inserted in an abnormal position, the revision can be performed in the same sitting. Also, the revision surgery with a potential risk of uncertain outcome, alongside additional anaesthesia, can be prevented. Conclusion: The hybrid operating room ensures that well-controlled, minimally invasive procedures are performed. Intraoperative imaging can be imperative in malformed cochleae and conditions that may complicate electrode insertion. Orv Hetil. 2021; 162(22): 878–883.


1992 ◽  
Vol 101 (1) ◽  
pp. 38-41 ◽  
Author(s):  
Thomas J. Haberkamp ◽  
Mitchell K. Schwaber

Skin flap complications are the most commonly reported problems in cochlear implant surgery when the anteriorly based C-shaped flap is used for the incision. If the prosthesis is exposed by flap necrosis, local skin flaps may be used to obtain coverage. Unfortunately, the long-term viability of such flaps may be compromised by the pressure exerted by the transmitter. Two cases of flap necrosis severe enough to expose the prosthesis have been successfully managed by relocating the device to a position superior to the auricle, under healthy skin. In one case the receiver was removed owing to infection and reimplanted at a later date. In this case, the electrode array was left in place at explantation in order to stent the cochlea. The surgical techniques and flap designs for this procedure are presented. No further surgical complications have developed in either case. The devices are performing well for both patients at this time. We have found relocation of the implant a useful technique in the management of major flap necrosis. This technique may also be useful to prevent flap necrosis should excessive flap thinning occur during the implant operation.


Author(s):  
Beomcho Jun ◽  
Sunwha Song

Abstract Objective This paper describes the construction of portals for electrode placement during cochlear implantation and emphasises the utility of pre-operative temporal bone three-dimensional computed tomography. Methods Temporal bone three-dimensional computed tomography was used to plan portal creation for electrode insertion. Results Pre-operative temporal bone three-dimensional computed tomography can be used to determine the orientation of temporal bone structures, which is important for mastoidectomy, posterior tympanotomy and cochleostomy, and when using the round window approach. Conclusion It is essential to create appropriate portals (from the mastoid cortex to the cochlea) in a step-by-step manner, to ensure the safe insertion of electrodes into the scala tympani. Pre-operative three-dimensional temporal bone computed tomography is invaluable in this respect.


2012 ◽  
Vol 126 (11) ◽  
pp. 1172-1175 ◽  
Author(s):  
Y M Feng ◽  
Y Q Wu ◽  
J Wang ◽  
S K Yin

AbstractObjective:We report the case of a successful cochlear implantation in a patient with severe cochlear hypoplasia.Case report:The outcome of cochlear implantation is generally less favourable for patients with cochlear hypoplasia than for those with a normal cochlear structure. In the reported patient, part of the electrode array was inserted into the internal auditory canal. Nevertheless, the benefits following cochlear implantation seemed to outweigh the risks for this patient.Conclusion:Cochlear hypoplasia is not necessarily a contraindication for cochlear implantation.


Author(s):  
Arindam Das ◽  
Mridul Janweja ◽  
Aryabrata Dubey ◽  
Sandipta Mitra ◽  
Arunabha Sengupta

2021 ◽  
Vol 10 (17) ◽  
pp. 3962
Author(s):  
Angel Ramos-de-Miguel ◽  
Juan Carlos Falcón-González ◽  
Angel Ramos-Macias

Background: The proximity of the electrode to the modiolar wall may be of interest to investigate the effect of pitch discrimination. This research establishes the relation between these factors and whether perimodiolar positions may provide benefits regarding improved electrode discrimination. Methods: A prospective randomized study including 24 post-lingual deaf adults was performed. A psychoacoustic study was done by using a psychoacoustic research platform. Radiological study, and a cone-beam computed tomography was used to assess post cochlear implantation electrodes’ position. Trans-impedance matrix (TIM) analysis was performed after cochlear implant insertion in all cases, and pupillometry test was also performed. Results: 12 patients received a slim perimodiolar electrode array, and 12 patients received a straight electrode array. Although all the patients showed similar speech test results after 12 months follow-up, those implanted with a perimodiolar electrode obtained better scores in electrode discrimination test and pupillometry test, and showed more homogenous TIM patterns. Conclusions: The better positioning of the electrode array seams to provide a better hearing resolution and less listening effort trans-impedance matrix seems to be a useful tool to analyze positioning of the perimodiolar array.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keita Tsukada ◽  
Shin-ichi Usami

Background: The development of less traumatic surgical techniques, such as the round window approach (RWA), as well as the use of flexible electrodes and post-operative steroid administration have enabled the preservation of residual hearing after cochlear implantation (CI) surgery. However, consideration must still be given to the complications that can accompany CI. One such potential complication is the impairment of vestibular function with resulting vertigo symptoms. The aim of our current study was to examine the changes in vestibular function after implantation in patients who received CI using less traumatic surgery, particularly the RWA technique.Methods: Sixty-six patients who received CI in our center were examined by caloric testing, cervical vestibular evoked myogenic potential (cVEMP) and ocular VEMP (oVEMP) before or after implantation, or both, to obtain data on semicircular canal, saccular and utricular function, respectively. Less traumatic CI surgery was performed by the use of the RWA and insertion of flexible electrodes such as MED-EL FLEX soft, FLEX 28, and FLEX 24 (Innsbruck, Austria).Results: Caloric response and the asymmetry ratio of cVEMP and oVEMP were examined before and after implantation using less traumatic surgical techniques. Compared with before implantation, 93.9, 82.4, and 92.5% of the patients showed preserved vestibular function after implantation based on caloric testing, cVEMP and oVEMP results, respectively. We also examined the results for vestibular function by a comparison of the 66 patients using the RWA and flexible electrodes, and 17 patients who underwent cochleostomy and insertion of conventional or hard electrodes. We measured responses using caloric testing, cVEMP and oVEMP in patients after CI. There were no differences in the frequencies of abnormal caloric and oVEMP results in the implanted ears between the RWA and cochleostomy. On the other hand, the frequency of abnormal cVEMP responses in the implanted ears in the patients who received implantation by cochleostomy was significantly higher than that in the patients undergoing surgery using the RWA.Conclusion: Patients receiving CI using less traumatic surgical techniques such as RWA and flexible electrodes have reduced risk of damage to vestibular function.


Sign in / Sign up

Export Citation Format

Share Document