Otopathologic Analysis of Patterns of Postmeningitis Labyrinthitis Ossificans

2020 ◽  
pp. 019459982093474
Author(s):  
Danielle R. Trakimas ◽  
Renata M. Knoll ◽  
Melissa Castillo-Bustamante ◽  
Elliott D. Kozin ◽  
Aaron K. Remenschneider

Objective Labyrinthitis ossificans (LO) may occur following meningitis and, in cases where cochlear implantation is indicated, complicate electrode insertion. LO is critical to identify for successful cochlear implantation, and histopathology is more sensitive than imaging for identification of LO. Herein we utilize otopathologic techniques to study the timing and location of intracochlear tissue formation following meningitic labyrinthitis (ML). Study Design Retrospective review. Setting Academic institution. Methods Temporal bone specimens with a history of bacterial ML were histologically evaluated. The location and extent of intracochlear tissue formation within the scala tympani (ST) and scala vestibuli (SV) were graded, and spiral ganglion neurons were counted. Results Fifty-one temporal bones were identified: 32 with no intracochlear tissue formation, 9 with fibrosis alone, and 10 with LO. Fibrosis was identified as early as 1.5 weeks after ML, while ossification was found only in specimens that survived multiple years after ML. All LO cases showed ossification of the ST at the round window membrane (RWM) with continuous extension throughout the basal turn. Extent of SV ossification correlated with that in the ST but showed frequent isolated distal involvement of the cochlea. Spiral ganglion neuron counts were lower than those in age-matched controls. Conclusion In this human temporal bone study, we found that postmeningitic LO results in ossification at the RWM with continuous extension into the ST of the basal turn and variable involvement of the SV. Identification of a patent basal turn beyond RWM ossification of the ST should permit full electrode insertion. Level of Evidence Retrospective review.

Author(s):  
Beomcho Jun ◽  
Sunwha Song

Abstract Objective This paper describes the construction of portals for electrode placement during cochlear implantation and emphasises the utility of pre-operative temporal bone three-dimensional computed tomography. Methods Temporal bone three-dimensional computed tomography was used to plan portal creation for electrode insertion. Results Pre-operative temporal bone three-dimensional computed tomography can be used to determine the orientation of temporal bone structures, which is important for mastoidectomy, posterior tympanotomy and cochleostomy, and when using the round window approach. Conclusion It is essential to create appropriate portals (from the mastoid cortex to the cochlea) in a step-by-step manner, to ensure the safe insertion of electrodes into the scala tympani. Pre-operative three-dimensional temporal bone computed tomography is invaluable in this respect.


2017 ◽  
Vol 22 (2) ◽  
pp. 116-123 ◽  
Author(s):  
Takefumi Kamakura ◽  
Daniel J. Lee ◽  
Barbara S. Herrmann ◽  
Joseph B. Nadol Jr.

The Cogan syndrome is a rare disorder characterized by nonsyphilitic interstitial keratitis and audiovestibular symptoms. Profound sensorineural hearing loss has been reported in approximately half of the patients with the Cogan syndrome resulting in candidacy for cochlear implantation in some patients. The current study is the first histopathologic report on the temporal bones of a patient with the Cogan syndrome who during life underwent bilateral cochlear implantation. Preoperative MRI revealed tissue with high density in the basal turns of both cochleae and both vestibular systems consistent with fibrous tissue due to labyrinthitis. Histopathology demonstrated fibrous tissue and new bone formation within the cochlea and vestibular apparatus, worse on the right. Severe degeneration of the vestibular end organs and new bone formation in the labyrinth were seen more on the right than on the left. Although severe bilateral degeneration of the spiral ganglion neurons was seen, especially on the right, the postoperative word discrimination score was between 50 and 60% bilaterally. Impedance measures were generally higher in the right ear, possibly related to more fibrous tissue and new bone found in the scala tympani on the right side.


2020 ◽  
pp. 014556132097486
Author(s):  
Mounika Reddy Y ◽  
Anjali Lepcha ◽  
Ann Mary Augustine ◽  
Ajay Philip ◽  
Philip Thomas

Successful cochlear implantation in the setting of labyrinthitis ossificans is challenging. Various surgical techniques are described to circumvent the region of ossification and retrograde insertion of the electrode array is one such option. While reverse programming is often recommended in the case of retrograde electrode insertion, we present our experience of retrograde electrode insertion for labyrinthitis ossificans, where standard programming was adopted due to patient preference and provided satisfactory outcomes.


2007 ◽  
Vol 116 (10) ◽  
pp. 731-738 ◽  
Author(s):  
Peter M. M. C. Li ◽  
Mehmet A. Somdas ◽  
Donald K. Eddington ◽  
Joseph B. Nadol

Objectives: In this study we aimed to evaluate new bone and new fibrous tissue formation in the inner ear following cochlear implantation. Methods: Twelve temporal bones from patients who underwent cochlear implantation during life were prepared for histologic study. The specimens were reconstructed by both 2-dimensional and 3-dimensional methods. These reconstructions were used to calculate the total volume and distribution of new bone and new fibrous tissue in the cochlea, the number of spiral ganglion cells, and other histopathologic parameters. Clinical data, including the last-recorded word recognition scores, were obtained from the patients' medical records. Results: New bone and new fibrous tissue were found in all 12 specimens, particularly at the site of cochleostomy. There was a significant correlation between overall damage to the lateral cochlear wall and the total volume of intracochlear new tissue (Spearman rho = .853; p = .0004). The total volume of new tissue did not correlate with word recognition scores or spiral ganglion cell counts. Conclusions: These preliminary results suggest that the degree of damage to the lateral cochlear wall may play an important role in influencing the amount of new tissue formation following cochlear implantation. Intracochlear new tissue does not appear to be an important determinant of performance as measured by word recognition scores or the total number of remaining spiral ganglion cells.


2006 ◽  
Vol 121 (1) ◽  
pp. 83-86 ◽  
Author(s):  
O F Adunka ◽  
C A Buchman

Objective: To demonstrate the feasibility and complexities of cochlear implantation in the setting of bilateral temporal bone osteoradionecrosis.Study design: Case report.Setting: Tertiary care referral centre.Case description: A 66-year-old woman with bilateral temporal bone osteoradionecrosis and profound hearing loss, following treatment for tonsillar cancer, underwent cochlear implantation. Prior canal wall down mastoidectomy and subsequent temporal bone resection with free flap reconstruction had been performed on the implanted ear. The contralateral ear received a canal wall down mastoidectomy. A completely dehiscent mastoid segment of the facial nerve and extensive fibrosis were evident in the implanted ear. Only minimal fibrous reaction was found within the cochlea, allowing for full electrode insertion. At three months, speech recognition testing documented a consonant-nucleus-consonant (CNC) word score of 54 per cent.Conclusions: This report demonstrates the feasibility of cochlear implantation after temporal bone surgery and free flap reconstruction in the setting of diffuse osteoradionecrosis. The patient's excellent open-set speech understanding using the cochlear implant implies that radiation did not severely damage the central auditory pathways. Thus, some patients with radiation-induced hearing loss may be appropriate cochlear implant candidates. Special attention should be paid to surgical planning, as complications related to wound healing, electrode insertion and facial nerve injury may be more likely.


2019 ◽  
Vol 161 (4) ◽  
pp. 658-665
Author(s):  
Danielle R. Trakimas ◽  
Reuven Ishai ◽  
Elliott D. Kozin ◽  
Joseph B. Nadol ◽  
Aaron K. Remenschneider

Objective Human otopathology following drill-out procedures for cochlear implantation (CI) in cases with labyrinthitis ossificans (LO) has not been previously described. This study uses the high sensitivity of histopathology to (1) evaluate surgical drill-out technique with associated intracochlear findings and (2) quantify spiral ganglion neuron populations in a series of patients with LO who underwent CI. Study Design Retrospective otopathology study. Setting Otopathology laboratory. Subjects and Methods Temporal bone (TB) specimens from cases with evidence of preoperative intracochlear fibroossification that required a drill-out procedure for CI electrode array insertion were included. All cases were histopathologically evaluated and 3-dimensional reconstructions of the cochleae were performed to interpret drilling paths and electrode trajectories. Results Five TB specimens were identified, of which 4 underwent drill-out of the basal turn of the cochlea and 1 underwent a radical cochlear drill-out. In multiple TBs, drilling was imprecise with resultant damage to essential structures. Two TBs showed injury to the modiolus, which was associated with substantially decreased or even absent neuronal populations within these areas. In addition, 2 cases with inadequate drill-out or extensive LO of the basal turn resulted in extracochlear placement of electrode arrays into the vestibule due to persistent obstruction within the basal turn. Conclusion Otopathology highlights the challenges of drill-out procedures in cases of LO. Imprecise drilling paths, due to distortion of normal cochlear anatomy, risk injury to the modiolus and adjacent neurons as well as extracochlear placement of electrode arrays, both of which may contribute to poorer hearing outcomes.


2007 ◽  
Vol 225 (1-2) ◽  
pp. 60-70 ◽  
Author(s):  
Anne Coco ◽  
Stephanie B. Epp ◽  
James B. Fallon ◽  
Jin Xu ◽  
Rodney E. Millard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document