volume computed tomography
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257294
Author(s):  
Xiaoyan Hu ◽  
Jie Gou ◽  
Wei Lin ◽  
Chunhua Zou ◽  
Wenbo Li

Rationale and objectives This study aimed to compare the volume computed tomography dose index (CTDIvol), dose length product (DLP), and size-specific dose estimate (SSDE), with the China and updated 2017 American College of Radiology (ACR) diagnostic reference levels (DRLs) in chest CT examinations of adults based on the water-equivalent diameter (Dw). Materials and methods All chest CT examinations conducted without contrast administration from January 2020 to July 2020 were retrospectively included in this study. The Dw and SSDE of all examinations were calculated automatically by “teamplay”. The CTDIvol and DLP were displayed on the DICOM-structured dose report in the console based on a 32cm phantom.The differences in patient CTDIvol, DLP, and SSDE values between groups were examined by the one-way ANOVA. The differences in patient CTDIvol, DLP, and SSDE values between the updated 2017 ACR and the China DRLs were examined with one sample t-tests. Results In total 14666 chest examinations were conducted in our study. Patients were divided into four groups based on Dw:270 (1.84%) in 15–20 cm group, 10287 (70.14%) in the 21–25 cm group, 4097 (27.94%) in the 26–30 cm group, and 12 (0.08%) patients had sizes larger than 30 cm. CTDIvol, DLP, and SSDE increased as a function of Dw (p<0.05). CTDIvol was smaller than SSDE among groups (p<0.05). The mean CTDIvol and DLP values were lower than the 25th, 50th, and 75th percentile of the China DRLs (p <0.05). The CTDIvol, DLP, and SSDE were lower than the 50th and 75th percentiles of the updated 2017 ACR DRLs (p <0.05) among groups. Conclusions SSDE takes into account the influence of the scanning parameters, patient size, and X-ray attenuation on the radiation dose, which can give a more realistic estimate of radiation exposure dose for patients undergoing CT examinations. Establishing hospital’s own DRL according to CTDIvol and SSDE is very important even though the radiation dose is lower than the national DRLs.


2021 ◽  
Author(s):  
David Herrmann ◽  
Franz-Tassilo Müller-Graff ◽  
Stefan Kaulitz ◽  
Mario Cebulla ◽  
Anja Kurz ◽  
...  

Abstract Purpose: This proof of concept describes the use of evoked electromyographic (EMG) activation of the facial nerve for intraoperative monitoring of the electrode insertion during cochlear implantation (CI).Methods: Intraoperative EMG measurements from the facial nerve were conducted in nine patients undergoing CI implantation. Electric pulses were emitted from contacts on the CI array during and immediately after electrode insertion. For control, the results of EMG measurements were compared to postoperative flat panel volume computed tomography scans with secondary reconstruction (fpVCTSECO).Results: During insertion, the EMG response evoked by the electrical stimulation from the CI was growing with the stimulating contact approaching the facial nerve and declined with increasing distance. After full insertion, contacts on the apical half of the CI array stimulated higher EMG responses compared with those on the basal half. Comparison with postoperative imaging demonstrated that electrode contacts stimulating high EMG responses had the shortest distances to the facial nerve. Conclusion: It could be demonstrated that electrically evoked EMG activation of the facial nerve can be used to monitor the progress during CI electrode insertion and to control the intracochlear electrode position after full insertion.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110320
Author(s):  
Johannes Taeger ◽  
Franz-Tassilo Müller-Graff ◽  
Tilmann Neun ◽  
Maria Köping ◽  
Philipp Schendzielorz ◽  
...  

This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.


Author(s):  
Franz-Tassilo Müller-Graff ◽  
Lukas Ilgen ◽  
Philipp Schendzielorz ◽  
Johannes Voelker ◽  
Johannes Taeger ◽  
...  

Abstract Purpose For further improvements in cochlear implantation, the measurement of the cochlear duct length (CDL) and the determination of the electrode contact position (ECP) are increasingly in the focus of clinical research. Usually, these items were investigated by multislice computed tomography (MSCT). The determination of ECP was only possible by research programs so far. Flat-panel volume computed tomography (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for high spatial resolution for the visualization of the temporal bone structures. Using a newly developed surgical planning software that enables the evaluation of CDL and the determination of postoperative ECP, this study aimed to investigate the combination of fpVCT and otological planning software to improve the implementation of an anatomically based cochlear implantation. Methods Cochlear measurements were performed utilizing surgical planning software in imaging data (MSCT, fpVCT and fpVCTSECO) of patients with and without implanted electrodes. Results Measurement of the CDL by the use of an otological planning software was highly reliable using fpVCTSECO with a lower variance between the respective measurements compared to MSCT. The determination of the inter-electrode-distance (IED) between the ECP was improved in fpVCTSECO compared to MSCT. Conclusion The combination of fpVCTSECO and otological planning software permits a simplified and more reliable analysis of the cochlea in the pre- and postoperative setting. The combination of both systems will enable further progress in the development of an anatomically based cochlear implantation.


2021 ◽  
Vol 8 (4) ◽  
pp. 225-230
Author(s):  
Chikezie Chukwuemeka Udo ◽  
Akintayo Daniel Omojola ◽  
Chukwuemeka Christian Nzotta

Objective: The study is aimed at optimizing the existing CT protocol for head scans in a Specialist Teaching Hospital in Edo State with a 16-slice Siemens Somatom Emotion scanner. Also, the study determined the volume computed tomography dose index (CTDIvol) and Dose Length Product (DLP) from the patient's dose profiles. The results from this study were compared with relevant studies. Materials and Methods: The scanner was used to acquire head CT of 160 patients retrospectively. Also, a locally designed head phantom was used to simulate individual patients using a similar protocol by changing the tube current (mA) and total scan width (TSW) only from the existing protocol. Results: Percentage dose reduction (PDR) for the CTDIvol and DLP ranged 42.00-46.80% and 37.13-43.54% respectively. The optimized CTDIvol and DLP were lowest compared to studies in the United Kingdom (UK), Italy, India, Ireland, Sudan, Nigeria, European Commission (EC), United States of America (USA) and Japan. Only the DLP for India was lower than our optimized value. Conclusion: The need to understudy CT configuration is necessary, this will allow end-users to optimize certain parameters in the CT scanner, which will reduce the patient dose without compromising image quality


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anwuli Christiana Tobi ◽  
Chukwuka Emmanuel Mokobia ◽  
Joyce Ekeme Ikubor ◽  
Akintayo Daniel Omojola

Purpose: The aim of this study was to determine the mean volume computed tomography dose index (CTDIvol) for the standard head and body phantoms and locally designed head and body phantoms respectively. Similarly, this study determined and compared the displayed mean CTDIvol and Dose Length Product (DLP) for the above phantoms from the CT monitor. In addition, the percentage deviations of both phantoms were compared with the recommended limits from the International Atomic Energy Agency (IAEA) and the American College of Radiologists (ACR). Materials and Methods: Dose measurements were made using a standard polymethymethacrylate (PMMA) phantom for head and body as well as a locally designed phantom with four CT scanners using thermoluminescence dosimeters (TLDs). The locally designed phantoms were made using a PMMA sheet, which was bent to give the desired cylindrical shape and was made like the standard phantoms. The constructed phantom was filled with water and the TLD chips were inserted into the center and peripheries of the phantoms to obtain the absorbed doses. Results: The CTDIvol for the standard head and body phantom for center A was 66.97 and 21.85mGy and for B was 23.39 and 6.29mGy respectively. Similarly, the CTDIvol for the constructed head and body phantom for center A was 63.91 and 19.84mGy and for B was 24.67 and 6.30mGy respectively. The uncertainty between the standard and constructed head phantoms for centers A and B was 4.6 and 5.5% respectively, while that of the standard and constructed body phantoms for centers A and B was 9.2 and 0.0% respectively. The maximum percent deviation from the console CTDIvol and DLP values with the four phantoms for centers A and B was within ±20%. The mean correction factors for the head and body were 0.998 and 1.05 respectively. Conclusion: The uncertainties obtained in this study were within the IAEA and ACR recommended value of ±20%. The constructed phantom proved useful for CT dose measurements.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Philipp Schendzielorz ◽  
Lukas Ilgen ◽  
Tassilo Mueller-Graff ◽  
Laurent Noyalet ◽  
Johannes Völker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document