A Matter of Time: The Temporal Perspectives of Organizational Responses to Climate Change

2012 ◽  
Vol 33 (11) ◽  
pp. 1537-1563 ◽  
Author(s):  
Natalie Slawinski ◽  
Pratima Bansal
Organization ◽  
2013 ◽  
Vol 20 (5) ◽  
pp. 722-742 ◽  
Author(s):  
Jane K. Lê

This empirical study examines the relationship between constructions of the future and anticipated organizational responses to climate change. Findings from the Athabasca oil sands region of Alberta, Canada indicate that actors’ views of climate change affect not only the way they construct the future of oil sands development, but also which responses they see as legitimate. Specifically, whether actors construct a future of no development, partial development or full development of the oil sands, influences the combinations of organizational responses they recommend (i.e. not responding, lobbying, engaging, developing and informing). These findings contribute to our understanding of organizational responses to climate change by showing that (1) climate action requires more than actors simply viewing climate change as strategic; (2) different constructions of the future create alternative strategic environments that necessitate divergent responses; (3) strong future constructions narrow the repertoire of business responses to climate change; and (4) in this process governments play a crucial role beyond setting climate change policy. This study thus highlights the importance of studying future constructions if we want to understand current organizational responses to environmental issues that contribute to climate change.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document