Interaction of heparin and protamine in presence of overdosage: in vitro study

2020 ◽  
pp. 021849232095506
Author(s):  
Alexander A Hanke ◽  
Ines Severloh ◽  
Felix Flöricke ◽  
Christian F Weber ◽  
Thomas Lang

Background Heparin is used for anticoagulation during cardiopulmonary bypass. After weaning from bypass, protamine is administered to neutralize the effects of heparin and thus reestablish hemostasis. Rotational thrombelastometry has been shown to discriminate between heparin and other impairing effects on coagulation. We analyzed the interaction of heparin and protamine under different conditions of overdosage in an in-vitro trial. Methods Blood samples were taken from 17 healthy volunteers, separated, and spiked in vitro with heparin, protamine for heparin neutralization, an overdosage of protamine, and two dosages of re-heparinization to evaluate heparin effects under the condition of protamine overdosage. All samples were analyzed in a standard ROTEM rotational thromboelastometry device after intrinsic activation with and without addition of heparinase. Coagulation time, maximum clot firmness, and clot formation time were recorded. Results Heparin led to prolongation of coagulation and clot formation times in the test without heparinase. Adequate protamine addition normalized the test, and overdosage of protamine led to significant prolongation of both times. Addition of heparin in the presence of protamine overdosage normalized these parameters. Conclusion We reconfirmed that the ROTEM device enables discrimination of the effects heparin and protamine on coagulation and detection of the coagulation-impairing effects of protamine overdosage. Furthermore, we were able to show a positive effect on coagulation times by heparin in the presence of protamine overdosage. Because this was an in-vitro study, these findings need to be confirmed in vivo, requiring further research.

2014 ◽  
Author(s):  
Ivo Dumic-Cule ◽  
Dunja Rogic ◽  
Damir Jezek ◽  
Lovorka Grgurevic ◽  
Slobodan Vukicevic

2004 ◽  
Vol 75 (3) ◽  
pp. 380-387 ◽  
Author(s):  
Jeong-Won Paik ◽  
Chang-Sung Kim ◽  
Kyoo-Sung Cho ◽  
Jung-Kiu Chai ◽  
Chong-Kwan Kim ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Tobias Nitschke ◽  
Philipp Groene ◽  
Alice-Christin Acevedo ◽  
Tobias Kammerer ◽  
Simon T. Schäfer

<b><i>Introduction:</i></b> While previous studies have shown a significant impact of extreme hypo- and hyperthermia on coagulation, effects of much more frequently occurring perioperative mild hypothermia are largely unknown. This study therefore aimed to analyze the effects of mild hypothermia using rotational thromboelastometry in vitro. <b><i>Materials and Methods:</i></b> Twelve healthy volunteers were included in this study. Standard thromboelastometric tests (EXTEM, INTEM, FIBTEM) were used to evaluate coagulation in vitro at 39, 37, 35.5, 35, and 33°C. Beyond standard thromboelastometric tests, we also evaluated the effects of mild hypothermia on the TPA-test (ClotPro, Enicor GmbH, Munich, Germany), a new test which aims to detect fibrinolytic capacity by adding tissue plasminogen activator to the sample. Data are presented as the median with 25/75th percentiles. <b><i>Results:</i></b> Extrinsically activated coagulation (measured by EXTEM) showed a significant increase in clot formation time (CFT; 37°C: 90 s [81/105] vs. 35°C: 109 s [99/126]; <i>p</i> = 0.0002), while maximum clot firmness (MCF) was not significantly reduced. Intrinsically activated coagulation (measured by INTEM) also showed a significant increase in CFT (37°C: 80 s [72/88] vs. 35°C: 94 s [86/109]; <i>p</i> = 0.0002) without significant effects on MCF. Mild hypothermia significantly increased both the lysis onset time (136 s [132/151; 37°C] vs. 162 s [141/228; 35°C], <i>p</i> = 0.0223) and lysis time (208 s [184/297; 37°C] vs. 249 s [215/358; 35°C]; <i>p</i> = 0.0259). <b><i>Conclusion:</i></b> This demonstrates that even under mild hypothermia coagulation is significantly altered in vitro. Perioperative temperature monitoring and management are greatly important and can help to prevent mild hypothermia and its adverse effects. Further investigation and in vivo testing of coagulation under mild hypothermia is needed.


2001 ◽  
Author(s):  
Alexey N. Bashkatov ◽  
Elina A. Genina ◽  
Irina V. Korovina ◽  
Yurii P. Sinichkin ◽  
Olga V. Novikova ◽  
...  

1980 ◽  
Vol 59 (10) ◽  
pp. 1643-1648 ◽  
Author(s):  
J.W. Bawden ◽  
T.G. Deaton ◽  
M. Chavis

Biomaterials ◽  
2021 ◽  
pp. 121039
Author(s):  
Shahar Shelly ◽  
Sigal Liraz Zaltsman ◽  
Ofir Ben-Gal ◽  
Avraham Dayan ◽  
Ithamar Ganmore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document