clot formation time
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 22)

H-INDEX

6
(FIVE YEARS 2)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262600
Author(s):  
Rodrigo B. Aires ◽  
Alexandre A. de S. M. Soares ◽  
Ana Paula M. Gomides ◽  
André M. Nicola ◽  
Andréa Teixeira-Carvalho ◽  
...  

In patients with severe forms of COVID-19, thromboelastometry has been reported to display a hypercoagulant pattern. However, an algorithm to differentiate severe COVID-19 patients from nonsevere patients and healthy controls based on thromboelastometry parameters has not been developed. Forty-one patients over 18 years of age with positive qRT-PCR for SARS-CoV-2 were classified according to the severity of the disease: nonsevere (NS, n = 20) or severe (S, n = 21). A healthy control (HC, n = 9) group was also examined. Blood samples from all participants were tested by extrinsic (EXTEM), intrinsic (INTEM), non-activated (NATEM) and functional assessment of fibrinogen (FIBTEM) assays of thromboelastometry. The thrombodynamic potential index (TPI) was also calculated. Severe COVID-19 patients exhibited a thromboelastometry profile with clear hypercoagulability, which was significantly different from the NS and HC groups. Nonsevere COVID-19 cases showed a trend to thrombotic pole. The NATEM test suggested that nonsevere and severe COVID-19 patients presented endogenous coagulation activation (reduced clotting time and clot formation time). TPI data were significantly different between the NS and S groups. The maximum clot firmness profile obtained by FIBTEM showed moderate/elevated accuracy to differentiate severe patients from NS and HC. A decision tree algorithm based on the FIBTEM-MCF profile was proposed to differentiate S from HC and NS. Thromboelastometric parameters are a useful tool to differentiate the coagulation profile of nonsevere and severe COVID-19 patients for therapeutic intervention purposes.


Children ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 47
Author(s):  
Alma Sulaj ◽  
Marina Tsaousi ◽  
Eleni Karapati ◽  
Abraham Pouliakis ◽  
Zoi Iliodromiti ◽  
...  

Background: ROTEM assay has gained increasing acceptance as a method for rapid and specific coagulation pathway assessment. However, its use in the neonatal population remains limited since reference ranges have not yet been established. Aims: (1) to determine reference ranges for healthy term neonates of ROTEM parameters using non-activated assay (NATEM) in cord blood samples; (2) to assess whether delivery mode, gender, gestational age, birth weight and blood group (ABO and Rhesus) of the neonate, coagulation disorder and anticoagulant medication of the mother have an impact on NATEM parameters. Methods: NATEM assay was conducted in cord blood samples of 189 term neonates without any medical history. Results: Reference ranges (2.5th and 97.5th percentiles) are established for clotting time (CT), clot formation time (CFT), α-angle, clot amplitude at 5, 10 and 20 min (A5, A10, A20), maximum clot firmness (MCF), lysis index at 30 and 60 min (LI30, LI60, %) and maximum clot elasticity (MCE). Reference ranges for NATEM are CT 182–499 s, CFT 63–176 s, α-angle 58–78°, A5 28–52 mm, A10 37–61 mm, A20 42–66 mm, MCF 43–67 mm, LI30 97–100%, LI60 87–98% and MCE 75–203. Male neonates appear to be more hypocoagulable than females. Conclusions: We demonstrate reference ranges for healthy term neonates in NATEM assay that could be used as a reference group for future studies of neonates with an underlying pathology.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1995
Author(s):  
Georgios N. Katsaras ◽  
Rozeta Sokou ◽  
Andreas G. Tsantes ◽  
Aikaterini Konstantinidi ◽  
Dimitra Gialamprinou ◽  
...  

Background: Although respiratory distress syndrome (RDS) constitutes a postnatal risk factor for bleeding and thromboembolic events in neonates, few studies have addressed this issue. We aimed to evaluate the hemostatic profile of neonates with RDS using rotational thromboelastometry (ROTEM). Methods: An observational study was conducted from November 2018 to November 2020 in the NICU of General Hospital of Nikaia “Aghios Panteleimon”. Preterm and term neonates with RDS hospitalized in the NICU were included and EXTEM (tissue factor-triggered extrinsic pathway), INTEM (ellagic acid activated intrinsic pathway), and FIBTEM (with platelet inhibitor cytochalasin D) assays were performed at the onset of the disease. Results: A hypocoagulable profile was noted in neonates with RDS compared to controls, expressed as significant prolongation of EXTEM CT (clotting time) and CFT (clot formation time), lower EXTEM A10 (amplitude at 10 min), MCF (maximum clot firmness), and LI60 (lysis index). Furthermore, prolongation of INTEM CFT and FIBTEM CT, and decreased INTEM and FIBTEM A10 and MCF were found in neonates with RDS. Multivariable logistic regression analysis showed that RDS is an independent factor for the recorded alterations in ROTEM variables. Conclusions: RDS is associated with a hypocoagulable profile and greater hyperfibrinolytic potential compared to healthy neonates.


Reports ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 35
Author(s):  
Rossella Cacciola ◽  
Elio Gentilini Gentilini Cacciola ◽  
Veronica Vecchio ◽  
Emma Cacciola

COVID-19-associated coagulopathy (CAC) identifies the coagulation changes in coronavirus disease 2019 (COVID-19) and is responsible for thrombosis. CAC has been studied in critical and severe stage COVID-19 disease through tests including the D-Dimer (DD), prothrombin time (PT), thromboplastin partial time (PTT), platelet count, fibrinogen (Fib), and platelet factor 4 (PF4) tests. However, these tests have some limitations. The aim of this study was to identify more accurate warning tests for early recognition of CAC and to prevent its deterioration to disseminated intravascular coagulation (DIC). First, we measured Interleukin-1a (IL-1a) and IL-8, and tissue factor pathway inhibitor (TFPI) as inflammation and endothelial damage markers, respectively. Second, we measured thrombin antithrombin complex (TAT), b-Thromboglobulin (b-TG), and thromboelastometric parameters including clotting time (CT), clot formation time (CFT), clot firmness (MCF), and clot lysis at 30 min (LY-30), as markers of coagulation and platelet activation. This study included 100 non-severe patients with COVID-19 that developed pulmonary embolism (PE) compared to 80 healthy patients. IL-1a and IL-8, and TFPI were higher as well as TAT and b-TG and thromboelastometric parameters, indicating hypercoagulability. If confirmed in other studies, these results could help in predicting the deterioration of non-severe COVID-19 disease, thereby reducing hospitalizations and health costs.


2021 ◽  
Vol 10 (15) ◽  
pp. 3397
Author(s):  
Andreas G. Tsantes ◽  
Dimitrios V. Papadopoulos ◽  
Ioannis G. Trikoupis ◽  
Stavros Goumenos ◽  
Daniele Piovani ◽  
...  

Introduction: Coronavirus disease 2019 (COVID-19) in patients with hip fractures is associated with increased incidence of venous thromboembolism (VTE). The purpose of this study was to evaluate the hemostatic alterations of COVID-19 that are associated with a higher thrombotic risk using rotational thromboelastometry (ROTEM). Methods: A retrospective observational study was performed including 20 COVID-19 patients with hip fractures. To compare the coagulopathy of patients with mild COVID-19 and hip fractures with the coagulopathy associated with each of these two conditions separately, we used two previously recruited groups of patients; 198 hip fracture patients without COVID-19 and 21 COVID-19 patients without hip fractures. The demographics, clinical parameters, conventional coagulation parameters and ROTEM findings of the three groups were analyzed and compared. Results: COVID-19 hip fracture patients had higher amplitude of clot firmness at 10 min (p < 0.001), higher alpha angle (p < 0.001), higher lysis index at 60 min (p < 0.001), and shorter clot formation time (p < 0.001) than non-COVID-19 hip fracture patients, indicating increased clot strength and impaired fibrinolysis due to COVID-19. The value of lysis index at 60 min (99%) in COVID-19 patients with hip fractures was consistent with fibrinolysis shut down. Multivariable linear regression analysis further confirmed that COVID-19 resulted in increased amplitude of clot firmness at 10 min (p < 0.001), increased maximum clot firmness (p < 0.001), increased lysis index at 60 min (p < 0.001) and increased alpha angle (p < 0.001), but significantly shortened clot formation time (p < 0.001). Discussion: The higher thrombotic risk in COVID-19 patients with hip fractures is characterized by increased clot strength and fibrinolysis shutdown, as shown by ROTEM findings. Further prospective studies are warranted to evaluate the need for modification of thromboprophylaxis to balance the hemostatic derangements of COVID-19 patients with hip fractures.


2021 ◽  
pp. 000313482110335
Author(s):  
Alison Smith ◽  
Juan Duchesne ◽  
Matthew Marturano ◽  
Shaun Lawicki ◽  
Kevin Sexton ◽  
...  

Background Viscoelastic tests including thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are being used in patients with severe hemorrhage at trauma centers to guide resuscitation. Several recent studies demonstrated hypercoagulability in female trauma patients that was associated with a survival advantage. The objective of our study was to elucidate the effects of gender differences in TEG/ROTEM values on survival in trauma patients with severe hemorrhage. Methods A retrospective review of consecutive adult patients receiving massive transfusion protocol (MTP) at 7 Level I trauma centers was performed from 2013 to 2018. Data were stratified by gender and then further examined by TEG or ROTEM parameters. Results were analyzed using univariate and multi-variate analyses. Results A total of 1565 patients were included with 70.9% male gender (n = 1110/1565). Female trauma patients were older than male patients (43.5 ± .9 vs 41.1 ± .6 years, P = .01). On TEG, females had longer reaction times (6.1 ± .9 min vs 4.8 ± .2 min, P = .03), increased alpha angle (68.6 ± .8 vs 65.7 ± .4, P < .001), and higher maximum amplitude (59.8 ± .8 vs 56.3 ± .4, P < .001). On ROTEM, females had significantly longer clot time (99.2 ± 13.7 vs 75.1 ± 2.6 sec, P = .09) and clot formation time (153.6 ± 10.6 sec vs 106.9 ± 3.8 sec, P < .001). When comparing by gender, no difference for in-hospital mortality was found for patients in the TEG or ROTEM group ( P > .05). Multivariate analysis showed no survival difference for female patients (OR 1.11, 95% CI .83-1.50, P = .48). Conclusions Although a difference between male and females was found on TEG/ROTEM for certain clotting parameters, no difference in mortality was observed. Prospective multi-institutional studies are needed.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Mengyun Xiao ◽  
Stefanie Hammer ◽  
Wissam A Khalel ◽  
Lisann Pelzl ◽  
Bernhard N Bohnert ◽  
...  

Abstract Background and Aims Urinary excretion of the fibrinolytic enzyme plasminogen has been identified as a characteristic feature of nephrotic syndrome (NS) in both human and experimental mouse models. Lack of plasminogen may lead to a hypercoagulable state and thrombosis, and mice with plasminogen deficiency have been shown to suffer from developing spontaneous thrombosis. However, the role of plasminogen in hypercoagulable state and thrombosis in an experimental nephrotic syndrome has not been investigated before. Method We investigated the relationship between plasminogen and a hypercoagulable state in an inducible nephrotic mouse model with conditional podocyte-specific podocin deletion (Nphs2Δipod * Plg+/+, n=12). The Nphs2Δipod mice with constitutive plasminogen knockout were used as negative plasminogen control (Nphs2Δipod * Plg-/-, n=15). All mice received a daily oral doxycycline administration for 2 weeks for NS induction. The last day of doxycycline treatment was set as day 0. Spot urine was collected daily for proteinuria and urinary plasmin activity measurement. Citrate blood was collected from each mouse before induction of NS, 7 days and 21 days after induction, respectively (Nphs2Δipod * Plg+/+ mice, n=4/timepoint; Nphs2Δipod * Plg-/- mice, n=5/timepoint). A global assessment of coagulation (extrinsic coagulation test, EX test) was examined by ClotPro® system. Besides, fibrinolysis was tested by adding tissue plasminogen activator (TPA test). Results According to the EX test, uninduced mice with plasminogen deficiency showed a significantly reduced clotting time (CT, Plg-/- vs. Plg+/+, 42 ± 1s vs. 54 ± 4s, p=0.0213), and decreased clot formation time (CFT, Plg-/- vs. Plg+/+, 82 ± 5s vs. 206 ± 28s p&lt;0.0001) with a larger alpha-angle (Plg-/- vs. Plg+/+, 75 ± 1° vs. 66 ± 2°, p=0.0041). The maximum clot firmness (MCF) was significantly increased in uninduced plasminogen knockout mice (Plg-/- vs. Plg+/+, 45 ± 0.5mm vs. 32 ± 2.5mm p&lt;0.0001). According to the TPA test, uninduced Nphs2Δipod *Plg-/-mice had a faster velocity of clot formation (α-angle, 75.6 ± 0.2° vs. 66.5 ± 1.6°, p=0.0254) and did not show any clot lysis in contrast to uninduced nphs2Δipod * plg+/+mice. After induction of NS, both Nphs2Δipod * Plg-/-mice and Nphs2Δipod * Plg+/+ mice developed massive proteinuria to a comparable extent (Plg-/- vs. Plg+/+on day 21, 218 ± 46mg/mg crea vs. 203 ± 28mg/mg crea), and plasminuria was detectable in nephrotic nphs2Δipod * plg+/+ mice. With the ongoing loss of plasminogen in the urine, CT and CFT was significantly reduced in nephrotic Nphs2Δipod * Plg+/+ mice. MCF was significantly increased with a faster velocity of clot formation measured by both the EX and TPA test. Moreover, clot lysis was significantly reduced. In nephrotic nphs2Δipod *plg-/-mice at day 21, there was also a tendency towards a decrease in CT, CFT and an increased velocity of clot formation. According to both EX and TPA test, there were no significant differences between the genotypes in nephrotic mice any more. Conclusion The results highlight that loss of plasminogen in the nephrotic state contributes to a hypercoagulable state with shortened clotting time, clot formation time, increased clot firmness, and most strikingly, loss of clot lysis. Changes in nephrotic wild-type mice were similar to mice with constitutive plasminogen deficiency, indicating that loss of plasminogen plays a role in the hypercoagulable state of nephrotic syndrome.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anne-Marije Hulshof ◽  
Renée A. G. Brüggemann ◽  
Mark M. G. Mulder ◽  
Tom W. van de Berg ◽  
Jan-Willem E. M. Sels ◽  
...  

Background: Coronavirus Disease 2019 (COVID-19) patients often present with thromboembolic events. In COVID-19 patients, routine hemostatic assays cannot correctly identify patients at risk for thromboembolic events. Viscoelastic testing with rotational thromboelastometry (ROTEM) might improve the characterization of COVID-19-associated coagulopathy.Objective: To unravel underlying coagulopathy and fibrinolysis over time as measured by serial assessment heparin-independent (FIBTEM and EXTEM) and fibrinolysis illustrating (tissue plasminogen activator; tPA) ROTEM assays.Patients/Methods: Between April 23 and June 12, consecutive adult patients enrolled within the Maastricht Intensive Care COVID (MaastrICCht) cohort were included, and a comprehensive set of clinical, physiological, pharmaceutical, and laboratory variables were collected daily. Twice per week, EXTEM, FIBTEM, and tPA ROTEM were performed. Clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT) were determined to assess clot development and breakdown and were compared to routine hemostatic assays.Results: In 36 patients, 96 EXTEM/FIBTEM and 87 tPA ROTEM tests were performed during a 6-week follow-up. CT prolongation was present in 54% of EXTEM measurements, which were not matched by prothrombin time (PT) in 37%. Respectively, 81 and 99% of all EXTEM and FIBTEM MCF values were above the reference range, and median MCF remained elevated during follow-up. The ROTEM fibrinolysis parameters remained prolonged with median LOT consequently &gt;49 min and unmeasurable LT in 56% of measurements, suggesting a severe hypofibrinolytic phenotype.Conclusion: ROTEM tests in COVID-19 ICU patients show hypercoagulability and severe hypofibrinolysis persisting over at least 6 weeks.


2021 ◽  
pp. 1-7
Author(s):  
Tobias Nitschke ◽  
Philipp Groene ◽  
Alice-Christin Acevedo ◽  
Tobias Kammerer ◽  
Simon T. Schäfer

<b><i>Introduction:</i></b> While previous studies have shown a significant impact of extreme hypo- and hyperthermia on coagulation, effects of much more frequently occurring perioperative mild hypothermia are largely unknown. This study therefore aimed to analyze the effects of mild hypothermia using rotational thromboelastometry in vitro. <b><i>Materials and Methods:</i></b> Twelve healthy volunteers were included in this study. Standard thromboelastometric tests (EXTEM, INTEM, FIBTEM) were used to evaluate coagulation in vitro at 39, 37, 35.5, 35, and 33°C. Beyond standard thromboelastometric tests, we also evaluated the effects of mild hypothermia on the TPA-test (ClotPro, Enicor GmbH, Munich, Germany), a new test which aims to detect fibrinolytic capacity by adding tissue plasminogen activator to the sample. Data are presented as the median with 25/75th percentiles. <b><i>Results:</i></b> Extrinsically activated coagulation (measured by EXTEM) showed a significant increase in clot formation time (CFT; 37°C: 90 s [81/105] vs. 35°C: 109 s [99/126]; <i>p</i> = 0.0002), while maximum clot firmness (MCF) was not significantly reduced. Intrinsically activated coagulation (measured by INTEM) also showed a significant increase in CFT (37°C: 80 s [72/88] vs. 35°C: 94 s [86/109]; <i>p</i> = 0.0002) without significant effects on MCF. Mild hypothermia significantly increased both the lysis onset time (136 s [132/151; 37°C] vs. 162 s [141/228; 35°C], <i>p</i> = 0.0223) and lysis time (208 s [184/297; 37°C] vs. 249 s [215/358; 35°C]; <i>p</i> = 0.0259). <b><i>Conclusion:</i></b> This demonstrates that even under mild hypothermia coagulation is significantly altered in vitro. Perioperative temperature monitoring and management are greatly important and can help to prevent mild hypothermia and its adverse effects. Further investigation and in vivo testing of coagulation under mild hypothermia is needed.


Author(s):  
Yaiza Herrero ◽  
Rahel Jud Schefer ◽  
Benjamin M. Muri ◽  
Nadja E. Sigrist

Abstract Objective The aim of this study was to determine the prevalence of acute traumatic coagulopathy (ATC) and identify associated clinical and laboratory parameters including rotational thromboelastometry. Study Design Dogs presenting within 6 hours after trauma were allocated to the ATC or non-ATC group based on thromboelastometry analysis (ex-tem S, in-tem S, fib-tem S). ATC was defined as ≥2 hypocoagulable parameters in 1 profile and ≥ 1 hypocoagulable parameter in an additional profile. Parameters used were ex-tem and in-tem clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), maximum lysis and fib-tem MCF. Clinical and laboratory parameters at presentation, animal trauma triage (ATT) score, transfusion requirement and outcome were compared. Logistic regression was used to identify independent factors associated with ATC. Results Eleven of 33 dogs presented with ATC and showed ex-tem CT and CFT prolongation and reduced MCF amplitude in all profiles (all p < 0.001). pH (p = 0.043) and potassium concentration (p = 0.022) were significantly lower and bleeding (p = 0.027) and plasma transfusions (p = 0.001) more common in dogs with ATC. Time after trauma (p = 0.040) and Animal Trauma Triage score (p = 0.038, including haematocrit as confounding factor) were associated with the presence of ATC. Conclusion Acute traumatic coagulopathy is more common in traumatized dogs than previously reported. Acute traumatic coagulopathy was associated with acidosis, Animal trauma triage score, time after trauma and higher transfusion needs. Coagulation abnormalities include ex-tem CT and CFT prolongations and decreased clot strength.


Sign in / Sign up

Export Citation Format

Share Document