inflammatory cytokine
Recently Published Documents


TOTAL DOCUMENTS

3990
(FIVE YEARS 1479)

H-INDEX

106
(FIVE YEARS 23)

2022 ◽  
pp. 153537022110669
Author(s):  
Hassan Ahmed ◽  
Urooj Amin ◽  
Xiaolun Sun ◽  
Demetrius R Pitts ◽  
Yunbo Li ◽  
...  

Lipopolysaccharide (LPS), also known as endotoxin, can trigger septic shock, a severe form of inflammation-mediated sepsis with a very high mortality rate. However, the precise mechanisms underlying this endotoxin remain to be defined and detoxification of LPS is yet to be established. Macrophages, a type of immune cells, initiate a key response responsible for the cascade of events leading to the surge in inflammatory cytokines and immunopathology of septic shock. This study was undertaken to determine whether the LPS-induced inflammation in macrophage cells could be ameliorated via CDDO-IM (2-cyano-3,12 dioxooleana-1,9 dien-28-oyl imidazoline), a novel triterpenoid compound. Data from this study show that gene expression levels of inflammatory cytokine genes such as interleukin-1 beta (IL-1β), interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) were considerably increased by treatment with LPS in macrophages differentiated from ML-1 monocytes. Interestingly, LPS-induced increase in expression of pro-inflammatory cytokine levels is reduced by CDDO-IM. In addition, endogenous upregulation of a series of antioxidant molecules by CDDO-IM provided protection against LPS-induced cytotoxicity in macrophages. LPS-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) transcriptional activity was also noted to decrease upon treatment with CDDO-IM in macrophages suggesting the involvement of the NF-κB signaling. This study would contribute to improve our understanding of the detoxification of endotoxin LPS by the triterpenoid CDDO-IM.


2022 ◽  
Vol 12 ◽  
Author(s):  
Fengming Ding ◽  
Lei Han ◽  
Qiang Fu ◽  
Xinxin Fan ◽  
Rong Tang ◽  
...  

Pseudomonas aeruginosa airway infection increases risks of exacerbations and mortality in chronic obstructive pulmonary disease (COPD). We aimed to elucidate the role of IL-17 in the pathogenesis. We examined the expression and influences of IL-23/IL-17A in patients with stable COPD (n = 33) or acute COPD exacerbations with P. aeruginosa infection (n = 34). A mouse model of COPD (C57BL/6) was used to investigate the role of IL-17A in host inflammatory responses against P. aeruginosa infection through the application of IL-17A–neutralizing antibody or recombinant IL-17A. We found that P. aeruginosa infection increased IL-23/17A signaling in lungs of both COPD patients and COPD mouse models. When COPD mouse models were treated with neutralizing antibody targeting IL-17A, P. aeruginosa induced a significantly less polymorphonuclear leukocyte infiltration and less bacterial burden in their lungs compared to those of untreated counterparts. The lung function was also improved by neutralizing antibody. Furthermore, IL-17A-signaling blockade significantly reduced the expression of pro-inflammatory cytokine IL-1β, IL-18, TNF-α, CXCL1, CXCL15 and MMP-9, and increased the expression of anti-inflammatory cytokine IL-10 and IL-1Ra. The application of mouse recombinant IL-17A exacerbated P. aeruginosa-mediated inflammatory responses and pulmonary dysfunction in COPD mouse models. A cytokine protein array revealed that the expression of retinol binding protein 4 (RBP4) was down-regulated by IL-17A, and exogenous RBP4-recombinant protein resulted in a decrease in the severity of P. aeruginosa-induced airway dysfunction. Concurrent application of IL-17A-neutralizing antibody and ciprofloxacin attenuated airway inflammation and ventilation after inoculation of P. aeruginosa in COPD mouse models. Our results revealed that IL-17 plays a detrimental role in the pathogenesis of P. aeruginosa airway infection during acute exacerbations of COPD. Targeting IL-17A is a potential therapeutic strategy in controlling the outcomes of P. aeruginosa infection in COPD patients.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kathryn W. Juchem ◽  
Anshu P. Gounder ◽  
Jian Ping Gao ◽  
Elise Seccareccia ◽  
Narayana Yeddula ◽  
...  

NFAT activating protein with ITAM motif 1 (NFAM1) is an ITAM bearing-transmembrane receptor that has been reported to play a role in B cell signaling and development. We performed expression analysis of NFAM1 using publicly available gene expression data sets and found that NFAM1 expression is significantly induced in intestinal biopsies from Crohn’s disease (CD) and ulcerative colitis (UC) patients. At the cellular level, we further observed high expression of NFAM1 in monocytes and neutrophils, and low expression in B and T cells. To explore the role of NFAM1 in multiple immune cells and its potential role in IBD, we generated NFAM1-/- mice. In contrast with previous reports using NFAM1-transgenic mice, NFAM1-/- mice have no obvious defects in immune cell development, or B cell responses. Interestingly, NFAM1-/- monocytes produce reduced levels of TNF-α in response to activation by multiple IBD-relevant stimuli, including CD40L, TLR ligands and MDP. Additional cytokines and chemokines such as IL-6, IL-12, CCL3 and CCL4 are also reduced in CD40L stimulated NFAM1-/- monocytes. Collectively, these findings indicate that NFAM1 promotes monocyte activation, thereby amplifying the response to diverse stimuli. Similarly, we observed that deletion of NFAM1 in human monocytes reduces expression of CD40L-induced CCL4. Lastly, to assess the role of NFAM1 in IBD, we compared development of anti-CD40 induced colitis in NFAM1+/+ and NFAM1-/- mice. We found that although NFAM1 deletion had no impact on development of gut pathology, we did observe a decrease in serum TNF-α, confirming that NFAM1 promotes pro-inflammatory cytokine production in vivo. Taken together, we conclude that NFAM1 functions to amplify cytokine production and should be further evaluated as a therapeutic target for treatment of autoimmune disease.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yujie Xing ◽  
Shuo Pan ◽  
Ling Zhu ◽  
Qianwei Cui ◽  
Zhiguo Tang ◽  
...  

Objective. The objective of this study was to investigate the involved mechanisms of advanced glycation end product- (AGE-) exacerbated atherosclerosis (AS). Methods. Toll-like receptor 4 (TLR4) inhibitor was administrated to type 2 diabetes mellitus (T2DM) AS rats. Atherosclerotic plaque, M1 macrophage infiltration, and VSMCs phenotypes were evaluated. AGE-exposed primary macrophages were treated with specific siRNAs knocking down receptor for AGEs (RAGE) and TLR4. Phenotypes of M1 macrophage and VSMCs were identified by fluorescent stains. Contact and noncontact coculture models were established. VSMCs and macrophages were cocultured in these models. ELISA was used to detect inflammatory cytokine concentrations. Relative mRNA expression levels were determined by real-time PCR. Relative protein expression and phosphorylation levels were evaluated by Western blots assays. Results. TLR4 inhibitor treatment significantly reduced arterial stenosis, infiltration of M1 polarized macrophages, and contractile-to-synthetic phenotype conversion of VSMCs in DM AS animals. RAGE and TLR4 silencing dramatically reduced AGE-induced macrophage M1 polarization, inflammatory cytokine secretion, and RAGE/TLR4/forkhead box protein C2 (FOXC2)/signaling which inhibited delta-like ligand 4 (Dll4) expression in macrophages. AGE-treated macrophages induced VSMC phenotypic conversion via activating Notch pathway in a contact coculture model rather than a noncontact model. The VSMC phenotypic conversion induction capability of macrophages was attenuated by RAGE and TLR4 silencing. Conclusions. AGEs induced activation of RAGE/TLR4/FOXC2 signaling, which featured macrophage with Dll4 high expression during M1 polarization. These macrophages promoted contractile-synthetic phenotypic conversion of VSMCs through the Dll4/Notch pathway after direct cell-to-cell contacts.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin E. Murphy ◽  
Adam K. Walker ◽  
Maryanne O’Donnell ◽  
Cherrie Galletly ◽  
Andrew R. Lloyd ◽  
...  

AbstractElevations in plasma levels of pro-inflammatory cytokines and C-reactive protein (CRP) in patient blood have been associated with impairments in cognitive abilities and more severe psychiatric symptoms in people with schizophrenia. The transcription factor nuclear factor kappa B (NF-κB) regulates the gene expression of pro-inflammatory factors whose protein products trigger CRP release. NF-κB activation pathway mRNAs are increased in the brain in schizophrenia and are strongly related to neuroinflammation. Thus, it is likely that this central immune regulator is also dysregulated in the blood and associated with cytokine and CRP levels. We measured levels of six pro-inflammatory cytokine mRNAs and 18 mRNAs encoding NF-κB pathway members in peripheral blood leukocytes from 87 people with schizophrenia and 83 healthy control subjects. We then assessed the relationships between the alterations in NF-κB pathway genes, pro-inflammatory cytokine and CRP levels, psychiatric symptoms and cognition in people with schizophrenia. IL-1β and IFN-γ mRNAs were increased in patients compared to controls (both p < 0.001), while IL-6, IL-8, IL-18, and TNF-α mRNAs did not differ. Recursive two-step cluster analysis revealed that high levels of IL-1β mRNA and high levels of plasma CRP defined ‘high inflammation’ individuals in our cohort, and a higher proportion of people with schizophrenia were identified as displaying ‘high inflammation’ compared to controls using this method (p = 0.03). Overall, leukocyte expression of the NF-κB-activating receptors, TLR4 and TNFR2, and the NF-κB subunit, RelB, was increased in people with schizophrenia compared to healthy control subjects (all p < 0.01), while NF-κB-inducing kinase mRNAs IKKβ and NIK were downregulated in patients (all p < 0.05). We found that elevations in TLR4 and RelB appear more related to inflammatory status than to a diagnosis of schizophrenia, but changes in TNFR2 occur in both the high and low inflammation patients (but were exaggerated in high inflammation patients). Further, decreased leukocyte expression of IKKβ and NIK mRNAs was unique to high inflammation patients, which may represent schizophrenia-specific dysregulation of NF-κB that gives rise to peripheral inflammation in a subset of patients.


Author(s):  
Eileen J. Murray ◽  
Serena B. Gumusoglu ◽  
Donna A. Santillan ◽  
Mark K. Santillan

Preeclampsia (PreE) is a placental disorder characterized by hypertension (HTN), proteinuria, and oxidative stress. Individuals with PreE and their children are at an increased risk of serious short- and long-term complications, such as cardiovascular disease, end-organ failure, HTN, neurodevelopmental disorders, and more. Currently, delivery is the only cure for PreE, which remains a leading cause of morbidity and mortality among pregnant individuals and neonates. There is evidence that an imbalance favoring a pro-inflammatory CD4+ T cell milieu is associated with the inadequate spiral artery remodeling and subsequent oxidative stress that prime PreE’s clinical symptoms. Immunomodulatory therapies targeting CD4+ T cell mechanisms have been investigated for other immune-mediated inflammatory diseases, and the application of these prevention tactics to PreE is promising, as we review here. These immunomodulatory therapies may, among other things, decrease tumor necrosis factor alpha (TNF-α), cytolytic natural killer cells, reduce pro-inflammatory cytokine production [e.g. interleukin (IL)-17 and IL-6], stimulate regulatory T cells (Tregs), inhibit type 1 and 17 T helper cells, prevent inappropriate dendritic cell maturation, and induce anti-inflammatory cytokine action [e.g. IL-10, Interferon gamma (IFN-γ)]. We review therapies including neutralizing monoclonal antibodies against TNF-α, IL-17, IL-6, and CD28; statins; 17-hydroxyprogesterone caproate, a synthetic hormone; adoptive exogenous Treg therapy; and endothelin-1 pathway inhibitors. Rebalancing the maternal inflammatory milieu may allow for proper spiral artery invasion, placentation, and maternal tolerance of foreign fetal/paternal antigens, thereby combatting early PreE pathogenesis.


2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Qingwen Li ◽  
Jiao Zhang ◽  
Shougang Liu ◽  
Fangfei Zhang ◽  
Jiayi Zhuang ◽  
...  

Psoriasis is a chronic inflammatory skin disease. Although miRNAs are reported to be associated with the pathogenesis of psoriasis, the contribution of individual microRNAs toward psoriasis remains unclear. The miR-17-92 cluster regulates cell growth and immune functions that are associated with psoriasis. miR-17-3p is a member of miR-17-92 cluster; however, its role in dermatological diseases remains unclear. Our study aims at investigating the effects of miR-17-3p and its potential target gene on keratinocytes proliferation and secretion of pro-inflammatory cytokine and their involvement in psoriasis. Initially, we found that miR-17-3p was upregulated in psoriatic skin lesions, and bioinformatic analyses suggested that CTR9 is likely to be a target gene of miR-17-3p. Quantitative reverse-transcriptase PCR and immunohistochemical analysis revealed that CTR9 expression was downregulated in psoriatic lesions. Using dual-luciferase reporter assays, we identified CTR9 as a direct target of miR-17-3p. Further functional experiments demonstrated that miR-17-3p promoted the proliferation and pro-inflammatory cytokine secretion of keratinocytes, whereas CTR9 exerted the opposite effects. Gain-of-function studies confirmed that CTR9 suppression partially accounted for the effects of miR-17-3p in keratinocytes. Furthermore, Western blot revealed that miR-17-3p activates the downstream STAT3 signaling pathway while CTR9 inactivates the STAT3 signaling pathway. Together, these findings indicate that miR-17-3p regulates keratinocyte proliferation and pro-inflammatory cytokine secretion partially by targeting the CTR9, which inactivates the downstream STAT3 protein, implying that miR-17-3p might be a novel therapeutic target for psoriasis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ana Beatriz Santa Cruz Garcia ◽  
Kevin P. Schnur ◽  
Asrar B. Malik ◽  
Gary C. H. Mo

AbstractGasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 96
Author(s):  
Agnieszka Kula ◽  
Miriam Dawidowicz ◽  
Sylwia Mielcarska ◽  
Paweł Kiczmer ◽  
Magdalena Chrabańska ◽  
...  

Background and Objectives: To assess the periostin level and the concentrations of pro-inflammatory cytokines: TNFα, IFN-γ, IL-1β and IL-17 in tumor and marginal tissues of CRC and to investigate the influence of periostin on angiogenesis by MVD (microvessel density) and concentration of VEGF-A in relation to clinicopathological parameters of patients. Materials and Methods: The study used 47 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of periostin, VEGF-A, TNFα, IFNγ, IL-1β and IL-17, we used the commercially available enzyme- linked immunosorbent assay kit. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope Results: We found significantly higher concentrations of periostin, VEGF-A, IFN-γ, IL-1 β, IL-17 and TNFα in the tumor samples compared with surgical tissue margins. The tumor concentrations of periostin were correlated with tumor levels of VEGF-A, IFN-γ, IL-1β and TNFα. We observed significant correlation between margin periostin and VEGF-A, IFN-γ, IL-17 and TNFα in tumor and margin specimens. Additionally, we found a significantly negative correlation between periostin tumor concentration and microvessel density at the invasive front. Tumor periostin levels were also correlated positively with tumor budding. Conclusions: Periostin activity may be associated with pro-inflammatory cytokine levels: TNFα, IFN-γ, IL-1β and IL-17. Our results also suggest the role of periostin in angiogenesis in CRC and its upregulation in poorly vascularized tumors. Further research on the regulations between periostin and cytokines are necessary to understand the interactions between tumor and immune tumor microenvironment, which could be helpful in the development of new targeted therapy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Chao Yang ◽  
Tianxi Zhang ◽  
Quanhua Tian ◽  
Yan Cheng ◽  
Kefyalew Gebeyew ◽  
...  

Successful establishment of passive immunity (PIT) and regulation of intestinal microbiota are crucial for ruminants to maintain body health and reduce the risk of disease during the neonatal period. Thus, the objective of this study was to investigate the effects of mannan oligosaccharide (MOS) supplementation on passive transfer of immunoglobulin G (IgG), serum inflammatory cytokines and antioxidant levels as well as bacteria composition in the ileal digesta. A total of 14 healthy neonatal Ganxi black goats with similar birth weight (BW: 2.35 ± 0.55 kg) were selected and allocated into two groups, only fed colostrum and milk replacer (CON, n = 7) and supplemented MOS (0.06% of birth BW) in the colostrum and milk replacer (MOS, n = 7). The results indicated that MOS supplementation significantly reduced (p &lt; 0.05) serum IgG level at 3 and 6 h after colostrum feeding. Serum GLP-1 level of goats in the MOS group was significantly lower (p = 0.001) than that in the CON group. Goats in the MOS group had higher serum CAT and lower MDA level than those in the CON group (p &lt; 0.05). Serum anti-inflammatory cytokine level of interleukin 4 (IL-4) was increased (p &lt; 0.05), while pro-inflammatory cytokine IL-6 level was reduced (p &lt; 0.05) in the MOS group when compared with the CON group. In addition, MOS supplementation remarkably increased (p &lt; 0.05) the level of secretory IgA (sIgA) in the ileal digesta. Principal coordinate analysis of 16S rRNA sequence based on Brinary jaccard, Bray curtis, and weighted UniFrac distance of ileal microbiota showed a distinct microbial differentiation between the CON and MOS groups (p &lt; 0.05). The relative abundance of Firmicutes in the MOS group was higher than that in the CON group, while the abundance of Verrucomicrobia was lower in the MOS group than that in the CON group at the phylum level (p &lt; 0.05). The relative abundance of Proteobacteria tended to decrease (p = 0.078) in the MOS group at the phylum level. The results of LEfSe analysis showed that MOS group was characterized by a higher relative abundance of Lactobacillus, while the CON group was represented by a higher relative abundance of Akkermansia and Ruminiclostridium_5. Our findings demonstrated that MOS supplementation during the neonatal period increases antioxidant capacity and reduces the inflammatory response, and promotes IgA secretion and Lactobacillus colonization in the ileum. Thus, MOS induced positive effects are more pronounced in neonatal goats that might be an effective approach to maintain intestinal health and improve the surviving rate of neonatal ruminants.


Sign in / Sign up

Export Citation Format

Share Document