scholarly journals Biochemical changes in knee articular cartilage of novice half-marathon runners

2019 ◽  
Vol 47 (11) ◽  
pp. 5671-5679 ◽  
Author(s):  
Leiyu Qiu ◽  
Jose Perez ◽  
Christopher Emerson ◽  
Carlos M. Barrera ◽  
Jianping Zhong ◽  
...  

Objective To evaluate changes in knee articular cartilage of novice half-marathon runners using magnetic resonance imaging T2 relaxation time mapping. Methods Healthy subjects were recruited from local running clubs who met the following inclusion criteria: (i) age 18–45 years; (ii) body mass index less than 30 kg/m2; (iii) had participated in one half-marathon or less (none within the previous 6 months); (iv) run less than 20 km/week; (v) no previous knee injury or surgery; (vi) no knee pain. T2 signals were measured pre- and post-race to evaluate the biochemical changes in articular cartilage after the subjects run a half-marathon. Results A significant increase in the mean ± SD T2 relaxation time was seen in the outer region of the medial tibial plateau (50.1 ± 2.4 versus 54.7 ± 2.6) and there was a significant decrease in T2 relaxation time in the lateral femoral condyle central region (50.2 ± 4.5 versus 45.4 ± 2.9). There were no significant changes in the patella, medial femoral condyle and lateral tibia articular surfaces. Conclusion An increase in T2 relaxation time occurs in the medial tibial plateau of novice half-marathon runners. This limited region of increased T2 values, when compared with complete medial compartment involvement seen in studies of marathon runners, may represent an association between distance run and changes seen in articular cartilage T2 values.

2020 ◽  
Author(s):  
Dokwan Lee ◽  
Ki-Taek Hong ◽  
Tae Seong Lim ◽  
Eugene Lee ◽  
Ye Hyun Lee ◽  
...  

Abstract Background: The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns and T2* relaxation time distributions.Methods: Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were compared in the shoulders before and three months after the supraspinatus tendon resections.Results: Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2* relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited positive correlations with regional contact strain variations three months after the supraspinatus resection surgeries.Conclusion: This is the first study to measure in vivo articular cartilage contact strains with high accuracy and reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular cartilage extracellular matrix may responds to mechanical changes in local areas.


2017 ◽  
Vol 45 (7) ◽  
pp. 1615-1621 ◽  
Author(s):  
Kang-Il Kim ◽  
Min-Chul Seo ◽  
Sang-Jun Song ◽  
Dae-Kyung Bae ◽  
Duk-Hyun Kim ◽  
...  

Background: Although cartilage regeneration after medial open-wedge high tibial osteotomy (HTO) has been described, there is a paucity of reports regarding which factors influence cartilage regeneration. Purpose: To document whether cartilage regeneration occurs in the previously degenerated medial compartment of arthritic knees after medial open-wedge HTO without concomitant cartilage procedures and to assess which predictive factors influence regeneration after HTO. Study Design: Case series; Level of evidence, 4 Methods: From February 2008 to January 2014, 104 consecutive knees were enrolled retrospectively that received medial open-wedge HTO with a medial locked plate system without any additional cartilage regeneration procedures and were followed by second-look arthroscopy for plate removal 2 years after surgery. The mean ± SD age at the time of index HTO was 56.3 ± 5.4 years. Cartilage status was graded at the time of initial HTO and second-look arthroscopy according to the International Cartilage Repair Society grading system, and regenerated articular cartilage was classified by the macroscopic staging system of Koshino et al at the time of second-look arthroscopy. Variables evaluated for possible association with regeneration of articular cartilage included age, sex, body mass index (BMI), American Knee Society score, mechanical tibiofemoral angle, medial proximal tibial angle, amount of correction angle, and degree of arthritis. Results: Per the International Cartilage Repair Society grading system, the lesions in the medial femoral condyle and the medial tibial plateau were improved in 54 knees (51.9%) and 36 knees (34.6%), respectively, at the time of second-look arthroscopy. According to the macroscopic grading system, partial and total regeneration of articular cartilage in the medial femoral condyle and the medial tibial plateau was observed in 75 knees (72%) and 57 knees (55%), respectively. Based on univariable logistic regression tests, regeneration of articular cartilage was associated with a smaller mean preoperative varus mechanical tibiofemoral angle (odds ratio [OR], 0.7; P = .023) and lower BMI (OR, 0.8; P = .026) for the medial femoral condyle and younger age (OR, 0.9; P = .048) and a larger mean correction angle (OR, 1.1; P = .023) for the medial tibial plateau. The mean preoperative knee and function scores were significantly improved at the last follow-up, but no correlation was found between the clinical outcomes and cartilage regeneration. Multiple logistic regression analysis for regeneration of articular cartilage showed lower BMI (OR, 0.7; P = .015) to be a significant predictor for the medial femoral condyle. Conclusion: Regeneration of degenerated articular cartilage in the medial compartment can be expected while correcting a varus deformity in arthritic knees after medial open-wedge HTO with a locked plate system without any additional cartilage regeneration procedures. Moreover, we suggest that medial open-wedge HTO in the medial arthritic knee with varus malalignment should be highly successful in terms of cartilage regeneration, especially for lower BMI patients.


2006 ◽  
Vol 14 (12) ◽  
pp. 1265-1271 ◽  
Author(s):  
M.J. Nissi ◽  
J. Rieppo ◽  
J. Töyräs ◽  
M.S. Laasanen ◽  
I. Kiviranta ◽  
...  

2010 ◽  
Vol 18 ◽  
pp. S196-S197
Author(s):  
K. Takahashi ◽  
H. Nakamura ◽  
K. Takenouchi ◽  
S. Nakamura ◽  
K. Ueshima ◽  
...  

2010 ◽  
Vol 195 (4) ◽  
pp. 1021-1025 ◽  
Author(s):  
Hee Kyung Kim ◽  
Tal Laor ◽  
Thomas B. Graham ◽  
Christopher G. Anton ◽  
Shelia R. Salisbury ◽  
...  

2020 ◽  
Author(s):  
Dokwan Lee ◽  
Ki-Taek Hong ◽  
Tae Seong Lim ◽  
Eugene Lee ◽  
Ye Hyun Lee ◽  
...  

Abstract Background: The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns and T2* relaxation time distributions.Methods: Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were compared in the shoulders before and three months after the supraspinatus tendon resections.Results: Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2* relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited positive correlations with regional contact strain variations three months after the supraspinatus resection surgeries.Conclusion: This is the first study to measure in vivo articular cartilage contact strains with high accuracy and reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular cartilage extracellular matrix may responds to mechanical changes in local areas.


2020 ◽  
Author(s):  
Dokwan Lee ◽  
Ki-Taek Hong ◽  
Tae Seong Lim ◽  
Eugene Lee ◽  
Ye Hyun Lee ◽  
...  

Abstract Background: The role of altered joint mechanics on cartilage degeneration in in vivo models has not been studied successfully due to a lack of pre-injury information. We aimed 1) to develop an accurate in vivo canine model to measure the changes in joint loading and T2 star (T2*) relaxation time before and after unilateral supraspinatus tendon resections, and 2) to find the relationship between regional variations in articular cartilage loading patterns and T2* relaxation time distributions.Methods: Rigid markers were implanted in the scapula and humerus of tested dogs. The movement of the shoulder bones were measured by a motion tracking system during normal gaits. In vivo cartilage contact strain was measured by aligning 3D shoulder models with the motion tracking data. Articular cartilage T2* relaxation times were measured by quantitative MRI scans. Articular cartilage contact strain and T2* relaxation time were compared in the shoulders before and three months after the supraspinatus tendon resections.Results: Excellent accuracy and reproducibility were found in our in vivo contact strain measurements with less than 1% errors. Changes in articular cartilage contact strain exhibited similar patterns with the changes in the T2* relaxation time after resection surgeries. Regional changes in the articular cartilage T2* relaxation time exhibited positive correlations with regional contact strain variations three months after the supraspinatus resection surgeries.Conclusion: This is the first study to measure in vivo articular cartilage contact strains with high accuracy and reproducibility. Positive correlations between contact strain and T2* relaxation time suggest that the articular cartilage extracellular matrix may responds to mechanical changes in local areas.


Sign in / Sign up

Export Citation Format

Share Document