The Role of A Conventional Simulator in Multileaf-Plan Simulation: A Proposal

2001 ◽  
Vol 87 (2) ◽  
pp. 91-94 ◽  
Author(s):  
Carlo Capirci ◽  
Polico Cesare ◽  
Giovanni Mandoliti ◽  
Giovanni Pavanato ◽  
Marcello Gava ◽  
...  

Modern computer networks provide satisfying levels of data recording and verification between the treatment planning system (TPS) and the accelerators, while the main weakness of the preparation chain remains the simulation. When a conventional simulator is employed, it may adversely affect the three-dimensional treatment planning system (3DPS) process because of the difficulty to document the leaf positions on the simulator location films and on the patient's skin. With a conventional simulator, hard copies of the DRRs of each field and CT scans at isocenter level are needed. In an attempt to transfer more information displayed from a BEV perspective from the 3DPS to simulator radiographs, this study aimed to reduce the quality loss by using a 2D conventional simulator in a 3DPS process. We realized an acetate photocopy of TPS data for each field, from a BEV perspective, containing: DRR, wire frames of the PTV, organs at risk and MLC aperture. The photocopies, with an appropriate magnification factor to obtain a correct projective value (ratio 1:1) at isocenter level, are carefully placed on the radiographic images on the same hard copy which allows us to better understand possible setup errors and obliges us to correct these. The method provides reliable documentation, facilitates treatment verification, and fulfils the criteria for MLC simulation. It is accurate, simple, and very inexpensive.

Author(s):  
F Falahati ◽  
A Nickfarjam ◽  
M Shabani

Background: Intensity modulated radiation therapy (IMRT) is an advanced method for delivery of three dimensional therapies, which provides optimal dose distribution with giving multiple nonuniform fluency to the patient. The complex dose distribution of IMRT should be checked to ensure that the accurate dose is delivered. Today, film dosimetry is a powerful tool for radiotherapy treatment Quality Assurance (QA) and a good method to verify dose distribution in phantoms. Objective: This study aimed to evaluate the accuracy of IMRT treatment planning system, Prowess Panther® software, with Gafchromic EBT3 films in a inhomogeneity phantomMethod: The IMRT plan was generated by Prowess Panther® treatment planning system (TPS) version 5.2 on a inhomogeneity phantom, then it was irradiated by ONCOR linear accelerator (Linac) with 6 (MV) photon beam energy. The Gafchromic EBT3 film located between the phantom has measured the dose distribution.­ To compare between TPS calculated doses and film measured doses, Gamma criteria 3%/3 mm, 4%/4 mm, 5%/5 mm, 6%/6 mm and 7%/7 mm Dose Difference (DD) and Distance to Agreement (DTA), respectively were used.Results: Gammas passing rates for PTV are obtained 67.5% for 3%/3mm, 78.8% for 4%/4mm, 86.3% for 5%/5mm, 91.2% for 6%/6mm and 94.3% for 7%/7mm and for organs at risk is 72.4% for 3%/3mm, 82.8% for 4%/4mm, 89.8% for 5%/5mm, 93.3% for 6%/6mm and 95.4% for 7%/7mm (respectively DD/DTA). By increasing the range of criteria the capability increased.Conclusion: The results show that the use of EBT3 film in a inhomogeneity phantoms allows us to evaluate the dose differences between the EBT3 measured dose distribution and TPS calculated dose distribution .Hence, a result Prowess Panther® TPS can be used for IMRT technique treatment.


2011 ◽  
Vol 36 (1) ◽  
pp. 15 ◽  
Author(s):  
Appasamy Murugan ◽  
XavierSidonia Valas ◽  
Kuppusamy Thayalan ◽  
Velayudham Ramasubramanian

Brachytherapy ◽  
2014 ◽  
Vol 13 (4) ◽  
pp. 332-336 ◽  
Author(s):  
John M. Boyle ◽  
Oana Craciunescu ◽  
Beverley Steffey ◽  
Jing Cai ◽  
Junzo Chino

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Wufei Cao ◽  
Yongdong Zhuang ◽  
Lixin Chen ◽  
Xiaowei Liu

Abstract Purpose In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning. Methods and materials One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: > 98% of PGTVnx received the prescribed doses of 70 Gy, > 98% of PGTVnd received the prescribed doses of 66 Gy and > 98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs). Results For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values < 0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by − 3.44 Gy, − 1.94 Gy, − 1.88 Gy, 0.44 Gy, 1.98 Gy, − 1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1 cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average. Conclusion The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.


Sign in / Sign up

Export Citation Format

Share Document