An extensive study on strain dependence of glass fiber-reinforced polymer-based composites

Author(s):  
Ashkan Farazin ◽  
Afrasyab Khan

Fiber-reinforced polymer-based composites may experience various strain rates under different dynamic loads. As the mechanical behavior of these composites varies with strain rate, their response will be dependent on the strain rate. This paper presents a comprehensive review on glass fibers and composites reinforced with these fibers, as the most practical polymer-based composite, under dynamic loading. First, the properties of long glass fibers under different strain rates will be reviewed in detail. In the following, experimental studies on the effects of strain rate on various types of glass fiber-reinforced polymer-based composites will be categorized and presented. The behavior of thermoset polymers will be also addressed under different strain rates. Finally, various analytical and numerical macromechanical and micromechanical models will be comprehensively described for this type of composites.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
D. S. Vijayan ◽  
A. Mohan ◽  
J. Jebasingh Daniel ◽  
V. Gokulnath ◽  
B. Saravanan ◽  
...  

An ecofriendly fiber reinforced polymer (FRP) had been used in the last decade to enhance the short concrete column’s strength and deformation capacity. This study involves the wrapping of FRP sheets with a thickness of 3 mm and 5 mm on a short column, and then the compressive strength is determined. The rectangular columns of size 150 mm × 300 mm are used for this study, and cast under the grades of M20 and M40 are wrapped with GFRP sheets at the thickness of 3 mm and 5 mm. These results are clarified at a specific thickness of the FRP-wrapped columns. It provides a maximum axial compressive strength, and Young’s modulus gets enhanced rigorously when it is to be compared to the normal concrete. This thesis deals with experimental studies of different parameters associated with wrapped glass fiber reinforced polymer (GFRP). In M20 grade, when the 3 mm wrapped specimen and the 5 mm wrapped specimen are compared, the specimen wrapped with 5 mm increases 5.182% more than the specimen wrapped with 3 mm. In M40 grade, when the 0 mm, 3 mm, and 5 mm wrapped specimens are compared, the specimen wrapped with 5 mm increases 2.47% more than the specimen wrapped with 0 mm. The 5 mm wrapping attains the maximum strength.


Author(s):  
Ayoub Y. Boroujeni ◽  
Mehran Tehrani ◽  
Majid Manteghi ◽  
Zhixian Zhou ◽  
Marwan Al-Haik

A relatively low-temperature carbon nanotube (CNT) synthesis technique, graphitic structure by design (GSD), was utilized to grow CNTs over glass fibers. Composite laminates based on the hybrid CNTs–glass fibers were fabricated and examined for their electromagnetic interfering (EMI) shielding effectiveness (SE), in-plane and out-of-plane electrical conductivities and mechanical properties. Despite degrading the strength and strain-to-failure, improvements in the elastic modulus, electrical conductivities, and EMI SE of the glass fiber reinforced polymer (GFRP) composites were observed.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Author(s):  
Priyadarsini Morampudi ◽  
Kiran Kumar Namala ◽  
Yeshwanth Kumar Gajjela ◽  
Majjiga Barath ◽  
Ganaparthy Prudhvi

Sign in / Sign up

Export Citation Format

Share Document