axial compressive strength
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
Vol 906 ◽  
pp. 17-23
Author(s):  
Ashot G. Tamrazyan ◽  
Yehia A.K. Sayed

A complete reorganization about the behavior of rectangular RC columns confined with FRP sheet is very important to predict the axial compressive strength values of the strengthened rectangular RC columns. That is because the process of strengthening RC rectangular column depending on several parameters that role this type of strengthening. These parameters include the characteristics of the used fiber, the grade of concrete and the geometry of the cross section including the rectangularity aspect ratio, corner radius, and size of specimens. Besides that, using a wide scope of experimental data may affect positively to generalize a model that considers the whole parameters affect the value of the axial strength. So, in this paper a review about parameters that affect the axial compressive strength values of rectangular RC columns was conducted. After that, based on the test results regarding FRP-confined rectangular RC columns available in the literature or conducted by the author, some existing confinement models for rectangular RC columns were assessed. Further, a new model is proposed through regression analysis of the database. A new model is proposed through regression analysis of the database. The proposed model was found to be in good agreement with the test results in the database. Finally, based on the results conclusions were drawn.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Shuhua Xiao ◽  
Yongjian Cai ◽  
Yongchang Guo ◽  
Jiaxiang Lin ◽  
Guotao Liu ◽  
...  

Geopolymer concrete (GC) has been gaining attention in research and engineering circles; however, it is a brittle material with poor tensile performance and crack resistance. To address these problems, we introduced fibers into GC. In this study, axial compression and scanning electron microscope (SEM) tests were carried out on polyvinyl alcohol (PVA) short fiber reinforced low-calcium fly ash-slag-based geopolymer concrete (PFRGC). The ratio of PVA short fibers and low-calcium fly ash on the compression behavior of fiber reinforced geopolymer concrete (FRGC) were investigated and discussed. The test results show that PVA fibers play a bridging role in the cracks of the specimen and bear the load together with the matrix, so the addition of PVA fibers delayed the crack propagation of GC under axial compression. However, with the increase of low-calcium fly ash/PVA fibers, the number of unreacted fly ash particles in PFRGCs increases. Too many unreacted fly ash particles make GC more prone to micro-cracks during loading, adversely affecting compressive properties. Therefore, the axial compressive strength, elastic modulus, and Poisson’s ratio of GC decrease with the increasing low-calcium fly ash/PVA fibers.


2021 ◽  
Vol 187 ◽  
pp. 106921
Author(s):  
Mohamed Mostafa Ibrahim ◽  
Ihab Mohamed El Aghoury ◽  
Sherif Abdel-Basset Ibrahim

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6346
Author(s):  
Haneen A. Sadeqi ◽  
Mirza Rustum Baig ◽  
Mohammad Al-Shammari

Fit accuracy and fracture strength of milled monolithic zirconia (Zi) and zirconia-reinforced lithium silicate (ZLS) crowns are important parameters determining the success of these restorations. This study aimed to evaluate and compare the marginal and internal fit of monolithic Zi and ZLS crowns, along with the fracture load, with and without mechanical aging. Thirty-two stone dies acquired from a customized master metal molar die were scanned, and ceramic crowns (16 Zi Ceramill Zolid HT+ and 16 ZLS Vita Suprinity) were designed and milled. Absolute marginal discrepancies (AMD), marginal gaps (MG), and internal gaps (IG) of the crowns, in relation to the master metal die, were evaluated using x-ray nanotomography (n = 16). Next, thirty-two metal dies were fabricated based on the master metal die, and crowns (16 Zi; 16 ZLS) cemented and divided into four groups of eight each; eight Zi with mechanical aging (MA), eight Zi without mechanical aging (WMA), eight ZLS (MA), and eight ZLS (WMA). Two groups of crowns (Zi-MA; ZLS-MA) were subjected to 500,000 mechanical cycles (200 ± 50 N, 10 Hz) followed by axial compressive strength testing of all crowns, until failure, and the values were recorded. Independent sample t tests (α = 0.05) revealed no significant differences between Zi and ZLS crowns (p > 0.05); for both internal and marginal gaps, however, there were significant differences in AMD (p < 0.005). Independent samples Mann–Whitney U and Kruskal–Wallis tests revealed significant differences between the two materials, Zi and ZLS, regardless of fatigue loading, and for the individual material groups based on aging (α = 0.05). Multiple comparisons using Bonferroni post-hoc analysis showed significant differences between Zi and ZLS material groups, with or without aging. Within the limitations of this study, the ZLS crown fit was found to be on par with Zi, except for the AMD parameter. As regards fracture resistance, both materials survived the normal range of masticatory forces, but the Zi crowns demonstrated greater resistance to fracture. The monolithic Zi and ZLS crowns seem suitable for clinical application, based on the fit and fracture strength values obtained.


2021 ◽  
Author(s):  
DENNIS SANTOS TAVARES ◽  
BRUNA CAMPOS AMARAL ◽  
DAVID AUGUSTO RIBEIRO ◽  
TADAYUKI YANAGI JUNIOR ◽  
FRANCISCO CARLOS GOMES ◽  
...  

Concrete is the main material used in the construction industry and its main property is the axial compressive strength. Usually the prediction of compressive strength is restricted to limited empirical equations and / or laboratory dosages. The objective of this study is to develop fuzzy systems capable of obtaining the axial compressive strength of concrete, from the mixtures and curing time. Several fuzzy systems were developed with Mamdani inference and different defuzzification methods. Triangular membership functions were adopted for the input variables in all systems and triangular functions for the output variables. The developed models were simulated and evaluated using three statistical indexes. The systems with Mamdani inference and centroid, bisector and mom defuzzification proved to be reliable and highly effective. The best performance was obtained by the fuzzy centroid defuzzification system according to the analyses.,


Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Danish Farooq ◽  
Nabil Abdelmelek ◽  
Éva Lublóy

This paper presents experimental versus theoretical comparison of carbon fiber reinforced polymer (CFRP) confined rubberized concrete (a new structural material). A total of sixty six rubberized concrete cylinders were tested in axial compression. The specimens were cast using 0 to 50% rubber replacement. Twenty seven cylinders were then confined with one, two and three layers of CFRP jackets. Axial compression results of the experimental study were compared with the North American and European design guidelines. The results indicate that the addition of rubber content in the concrete leads to premature micro cracking and lateral expansion in concrete. This increased lateral dilation exploited the potential of FRP jackets. The axial compressive strength and strain values for CFRP confined RuC cylinders reached up to unprecedented 600 and 330 percent of unconfined samples. Furthermore, the current international design guidelines developed for conventional concrete confinement failed to predict the compressive strength of rubberized concrete. There is a strong need to re-evaluate the current design codes and their applicability to investigate fiber reinforced confined rubberized concrete. Moreover, the proposed equations in this research can better predict the axial compressive strength of FRP confined RuC.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 415-422
Author(s):  
Mohamed El Aghoury ◽  
Maged Hanna ◽  
Sherif Ibrahim ◽  
Rawan Elhalous

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
D. S. Vijayan ◽  
A. Mohan ◽  
J. Jebasingh Daniel ◽  
V. Gokulnath ◽  
B. Saravanan ◽  
...  

An ecofriendly fiber reinforced polymer (FRP) had been used in the last decade to enhance the short concrete column’s strength and deformation capacity. This study involves the wrapping of FRP sheets with a thickness of 3 mm and 5 mm on a short column, and then the compressive strength is determined. The rectangular columns of size 150 mm × 300 mm are used for this study, and cast under the grades of M20 and M40 are wrapped with GFRP sheets at the thickness of 3 mm and 5 mm. These results are clarified at a specific thickness of the FRP-wrapped columns. It provides a maximum axial compressive strength, and Young’s modulus gets enhanced rigorously when it is to be compared to the normal concrete. This thesis deals with experimental studies of different parameters associated with wrapped glass fiber reinforced polymer (GFRP). In M20 grade, when the 3 mm wrapped specimen and the 5 mm wrapped specimen are compared, the specimen wrapped with 5 mm increases 5.182% more than the specimen wrapped with 3 mm. In M40 grade, when the 0 mm, 3 mm, and 5 mm wrapped specimens are compared, the specimen wrapped with 5 mm increases 2.47% more than the specimen wrapped with 0 mm. The 5 mm wrapping attains the maximum strength.


Sign in / Sign up

Export Citation Format

Share Document