Pearls and pitfalls in experimental in vivo models of migraine: Dural trigeminovascular nociception

Cephalalgia ◽  
2013 ◽  
Vol 33 (8) ◽  
pp. 577-592 ◽  
Author(s):  
Simon Akerman ◽  
Philip R Holland ◽  
Jan Hoffmann

Background Migraine is a disorder of the brain and is thought to involve activation of the trigeminovascular system, which includes the peripheral afferent projection to the nociceptive specific dura mater, as well as the central afferent projection to the trigeminal nucleus caudalis. Stimulation of the blood vessels of the dura mater produces pain in patients that is referred to the head similar to headache. Headache mechanisms The likely reason for the pain is because the vascular structures of the dura mater, including the superior sagittal sinus and middle meningeal artery, are richly innervated by a plexus of largely unmyelinated sensory nerve fibers from the ophthalmic division of the trigeminal ganglion. Methodology Stimulation of these nociceptive specific nerve fibers is painful and produces neuronal activation in the trigeminal nucleus caudalis. Preclinical models of headache have taken advantage of this primarily nociceptive pathway, and various animal models use dural trigeminovascular nociception to assay aspects of head pain. These assays measure responses at the level of the dural vasculature and the central trigeminal nucleus caudalis as a correlate of trigeminovascular activation thought to be involved in headache. Summary This review will summarize the history of the development of models of dural trigeminovascular nociception, including intravital microscopy and laser Doppler flowmetry at the level of the vasculature, and electrophysiology and Fos techniques used to observe neuronal activation at the trigeminal nucleus caudalis. It will also describe some of pitfalls of these assays and developments for the future.

2019 ◽  
Vol 485 (1) ◽  
pp. 114-116
Author(s):  
G. I. Lobov ◽  
Yu. P. Gerasimenko ◽  
T. R. Moshonkina

Changes of the blood flow in the shin skin in the case of 12 healthy subjects by laser doppler flowmetry were observed under transcutaneous electrical spinal cord stimulation (TSCS) by subthreshold bipolar pulses with a frequency of 30 Hz were detected. It was found that the TSCS in the area of the vertebrae T11 and L1 leads to a significant increase in skin blood flow. With a stimulus intensity of 90% of the motor threshold, the microcirculation rate increased by more than 85% relative to baseline.The results of the study show that the stimulation of blood flow in the skin by TSCS is realized mainly due to the antidromic stimulation of sensory nerve fibers. An important mediator that contributes to vasodilation and increase of cutaneous blood flow in PSCS is nitric oxide (NO), which is predominantly endothelial in origin.


Cephalalgia ◽  
1999 ◽  
Vol 19 (10) ◽  
pp. 851-858 ◽  
Author(s):  
S Shepheard ◽  
L Edvinsson ◽  
M Cumberbatch ◽  
D Williamson ◽  
G Mason ◽  
...  

This study investigated whether the selective 5HT1F receptor agonist LY334370 has other possible antimigraine mechanisms in addition to the proposed inhibition of dural plasma extravasation. LY334370 (up to 10−5 M) had no vasoconstrictor effects on human cerebral arteries in vitro. It had no effect (up to 10 mg kg−1, iv) on neurogenic vasodilation of dural blood vessels produced by electrical stimulation of the dura mater in anesthetized rats. Nor had it any effect (at 3 mg kg−1, iv) on the hyperalgesia produced by injection of carrageenan into the paw of conscious rats or on nociceptive reflex responses in the spinalized, decerebrate rabbit (up to 3 mg kg−1, iv), indicating that it has no general analgesic properties. However, it significantly inhibited activation of second-order neurons in the trigeminal nucleus caudalis produced by electrical stimulation of the dura mater in anesthetised rats at 3 mg kg−1, iv. These results provide evidence to suggest that LY334370 has a central mechanism of action in blocking the transmission of nociceptive impulses within the trigeminal nucleus caudalis and that this may represent a mechanism through which it has its antimigraine effect.


Cephalalgia ◽  
1988 ◽  
Vol 8 (2) ◽  
pp. 83-91 ◽  
Author(s):  
Stephen Markowitz ◽  
Kiyoshi Saito ◽  
Michael A Moskowitz

C-fiber- dependent neurogenic plasma extravasation developed in the dura mater but not the brain after electric stimulation of the rat trigeminal ganglion or after chemical stimulation of perivascular axons with intravenous capsaicin, a drug that depolarizes sensory nerve fibers. C-fiber- independent extravasation also developed in this tissue after intravenous injections of substance P or neurokinin A (two constituents of unmyelinated C fibers) and after serotonin, bradykinin, or allergic challenge in presensitized animals. Intravenous dihydroergotamine or ergotamine tartrate, in doses similar to those used to treat migraine and cluster headache, prevented the stimulation-induced leakage of plasma proteins within the dura mater. Not unexpectedly, the acute administration of methysergide, a drug effective in the prophylactic treatment of headache, was inactive in this acute model. Neither acute nor chronic administration of propranolol affected stimulation-induced leakage of plasma protein. These results demonstrate that neurogenic inflammation develops within the dura mater in the rat and that ergot alkaloids prevent the process by a C-fiber-dependent mechanism.


Neuroscience ◽  
1997 ◽  
Vol 77 (3) ◽  
pp. 829-839 ◽  
Author(s):  
V Dimitriadou ◽  
A Rouleau ◽  
M.D Trung Tuong ◽  
G.J.F Newlands ◽  
H.R.P Miller ◽  
...  

1979 ◽  
Vol 237 (4) ◽  
pp. H433-H439 ◽  
Author(s):  
P. R. Freund ◽  
L. B. Rowell ◽  
T. M. Murphy ◽  
S. F. Hobbs ◽  
S. H. Butler

Differential nerve block from peridural anesthesia was used to determine a) if the pressor response to muscle ischemia in man is caused by stimulation of small sensory nerve fibers and b) if these fibers contribute to cardiovascular-respiratory responses during dynamic exercise. Four men exercised at 50-100 W for 5 min. Muscle ischemia and a sustained pressor response were produced by total circulatory occlusion of both legs beginning 30 s before the end of exercise and continuing for 3 min postexercise. During regression of full motor and sensory block, motor strength recovered while sensory block continued; the pressor response was blocked as long as sensory anesthesia persisted (two subjects). During blockade of the pressor response, cardiovascular-respiratory responses to exercise gradually returned from augmented to normal (preblock) levels. Sensory blockade was incomplete in two subjects and the pressor response was not fully blocked. We conclude that stimulation of small sensory fibers during ischemia elicits the pressor response, but that these fibers appear not to contribute to cardiovascular-respiratory responses during mild dynamic exercise with adequate blood flow.


2001 ◽  
Vol 1 ◽  
pp. 20-20
Author(s):  
K. Messlinger

The mammalian dura mater encephali is richly supplied by trigeminal nerve fibers, a considerable proportion of which contains calcitonin gene-related peptide (CGRP). As plasma levels of CGRP are increased in some forms of headaches, the question is in which way CGRP is involved in nociceptive mechanisms within the peripheral and the central trigeminovascular system.


Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1283-1295
Author(s):  
Karin Warfvinge ◽  
Diana N Krause ◽  
Aida Maddahi ◽  
Anne-Sofie Grell ◽  
Jacob CA Edvinsson ◽  
...  

Background Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. Methods The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. Results Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. Conclusion Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.


1990 ◽  
Vol 68 (6) ◽  
pp. 2305-2311 ◽  
Author(s):  
J. N. Baraniuk ◽  
M. L. Kowalski ◽  
M. A. Kaliner

Electrical stimulation of rat sensory nerves produces cutaneous vasodilation and plasma protein extravasation, a phenomenon termed “neurogenic inflammation”. Rat skin on the dorsum of the paw developed neurogenic inflammation after electrical stimulation of the saphenous nerve. In tissue sections, the extravasation of the supravital dye monastral blue B identified permeable vessels. Mast cells were identified by toluidine blue stain. Permeable vessels were significantly more dense in the superficial 120 microns of the dermis than in the deeper dermis, whereas mast cells were significantly more frequent in the deeper dermis. The relationships between nociceptive sensory nerve fibers, permeable vessels, and mast cells were examined by indirect immunohistochemistry for calcitonin gene-related peptide (CGRP), neurokinin A (NKA), and substance P (SP). CGRP-, NKA-, and SP-containing nerves densely innervated the superficial dermis and appeared to innervate the vessels that became permeable during neurogenic inflammation. In contrast, mast cells were not associated with either permeable vessels or nerve fibers. These data suggest that electrical stimulation of rat sensory nerves produces vascular permeability by inducing the release of neuropeptides that may directly stimulate the superficial vascular bed. Mast cells may not be involved in this stage of cutaneous neurogenic inflammation in rat skin.


1998 ◽  
Vol 31 ◽  
pp. S198
Author(s):  
Motohide Takemura ◽  
Atsutoshi Tsujio ◽  
Toyomi Shimada ◽  
Yoshio Shigenaga ◽  
Ryotaro Kuroda

Sign in / Sign up

Export Citation Format

Share Document